I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

Overview

An Image Captioning codebase

This is a codebase for image captioning research.

It supports:

A simple demo colab notebook is available here

Requirements

  • Python 3
  • PyTorch 1.3+ (along with torchvision)
  • cider (already been added as a submodule)
  • coco-caption (already been added as a submodule) (Remember to follow initialization steps in coco-caption/README.md)
  • yacs
  • lmdbdict

Install

If you have difficulty running the training scripts in tools. You can try installing this repo as a python package:

python -m pip install -e .

Pretrained models

Checkout MODEL_ZOO.md.

If you want to do evaluation only, you can then follow this section after downloading the pretrained models (and also the pretrained resnet101 or precomputed bottomup features, see data/README.md).

Train your own network on COCO/Flickr30k

Prepare data.

We now support both flickr30k and COCO. See details in data/README.md. (Note: the later sections assume COCO dataset; it should be trivial to use flickr30k.)

Start training

$ python tools/train.py --id fc --caption_model newfc --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 10 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 0 --checkpoint_path log_fc --save_checkpoint_every 6000 --val_images_use 5000 --max_epochs 30

or

$ python tools/train.py --cfg configs/fc.yml --id fc

The train script will dump checkpoints into the folder specified by --checkpoint_path (default = log_$id/). By default only save the best-performing checkpoint on validation and the latest checkpoint to save disk space. You can also set --save_history_ckpt to 1 to save every checkpoint.

To resume training, you can specify --start_from option to be the path saving infos.pkl and model.pth (usually you could just set --start_from and --checkpoint_path to be the same).

To checkout the training curve or validation curve, you can use tensorboard. The loss histories are automatically dumped into --checkpoint_path.

The current command use scheduled sampling, you can also set --scheduled_sampling_start to -1 to turn off scheduled sampling.

If you'd like to evaluate BLEU/METEOR/CIDEr scores during training in addition to validation cross entropy loss, use --language_eval 1 option, but don't forget to pull the submodule coco-caption.

For all the arguments, you can specify them in a yaml file and use --cfg to use the configurations in that yaml file. The configurations in command line will overwrite cfg file if there are conflicts.

For more options, see opts.py.

Train using self critical

First you should preprocess the dataset and get the cache for calculating cider score:

$ python scripts/prepro_ngrams.py --input_json data/dataset_coco.json --dict_json data/cocotalk.json --output_pkl data/coco-train --split train

Then, copy the model from the pretrained model using cross entropy. (It's not mandatory to copy the model, just for back-up)

$ bash scripts/copy_model.sh fc fc_rl

Then

$ python tools/train.py --id fc_rl --caption_model newfc --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 10 --learning_rate 5e-5 --start_from log_fc_rl --checkpoint_path log_fc_rl --save_checkpoint_every 6000 --language_eval 1 --val_images_use 5000 --self_critical_after 30 --cached_tokens coco-train-idxs --max_epoch 50 --train_sample_n 5

or

$ python tools/train.py --cfg configs/fc_rl.yml --id fc_rl

You will see a huge boost on Cider score, : ).

A few notes on training. Starting self-critical training after 30 epochs, the CIDEr score goes up to 1.05 after 600k iterations (including the 30 epochs pertraining).

Generate image captions

Evaluate on raw images

Note: this doesn't work for models trained with bottomup feature. Now place all your images of interest into a folder, e.g. blah, and run the eval script:

$ python tools/eval.py --model model.pth --infos_path infos.pkl --image_folder blah --num_images 10

This tells the eval script to run up to 10 images from the given folder. If you have a big GPU you can speed up the evaluation by increasing batch_size. Use --num_images -1 to process all images. The eval script will create an vis.json file inside the vis folder, which can then be visualized with the provided HTML interface:

$ cd vis
$ python -m SimpleHTTPServer

Now visit localhost:8000 in your browser and you should see your predicted captions.

Evaluate on Karpathy's test split

$ python tools/eval.py --dump_images 0 --num_images 5000 --model model.pth --infos_path infos.pkl --language_eval 1 

The defualt split to evaluate is test. The default inference method is greedy decoding (--sample_method greedy), to sample from the posterior, set --sample_method sample.

Beam Search. Beam search can increase the performance of the search for greedy decoding sequence by ~5%. However, this is a little more expensive. To turn on the beam search, use --beam_size N, N should be greater than 1.

Evaluate on COCO test set

$ python tools/eval.py --input_json cocotest.json --input_fc_dir data/cocotest_bu_fc --input_att_dir data/cocotest_bu_att --input_label_h5 none --num_images -1 --model model.pth --infos_path infos.pkl --language_eval 0

You can download the preprocessed file cocotest.json, cocotest_bu_att and cocotest_bu_fc from link.

Miscellanea

Using cpu. The code is currently defaultly using gpu; there is even no option for switching. If someone highly needs a cpu model, please open an issue; I can potentially create a cpu checkpoint and modify the eval.py to run the model on cpu. However, there's no point using cpus to train the model.

Train on other dataset. It should be trivial to port if you can create a file like dataset_coco.json for your own dataset.

Live demo. Not supported now. Welcome pull request.

For more advanced features:

Checkout ADVANCED.md.

Reference

If you find this repo useful, please consider citing (no obligation at all):

@article{luo2018discriminability,
  title={Discriminability objective for training descriptive captions},
  author={Luo, Ruotian and Price, Brian and Cohen, Scott and Shakhnarovich, Gregory},
  journal={arXiv preprint arXiv:1803.04376},
  year={2018}
}

Of course, please cite the original paper of models you are using (You can find references in the model files).

Acknowledgements

Thanks the original neuraltalk2 and awesome PyTorch team.

Owner
Ruotian(RT) Luo
Phd student at TTIC
Ruotian(RT) Luo
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022