Tooling for GANs in TensorFlow

Related tags

Deep Learninggan
Overview

TensorFlow-GAN (TF-GAN)

TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs).

Structure of the TF-GAN Library

TF-GAN is composed of several parts, which are designed to exist independently:

  • Core: the main infrastructure needed to train a GAN. Set up training with any combination of TF-GAN library calls, custom-code, native TF code, and other frameworks
  • Features: common GAN operations and normalization techniques, such as instance normalization and conditioning.
  • Losses: losses and penalties, such as the Wasserstein loss, gradient penalty, mutual information penalty, etc.
  • Evaluation: standard GAN evaluation metrics. Use Inception Score, Frechet Distance, or Kernel Distance with a pretrained Inception network to evaluate your unconditional generative model. You can also use your own pretrained classifier for more specific performance numbers, or use other methods for evaluating conditional generative models.
  • Examples: simple examples on how to use TF-GAN, and more complicated state-of-the-art examples

Who uses TF-GAN?

Numerous projects inside Google. The following are some published papers that use TF-GAN:

The framework Compare GAN uses TF-GAN, especially the evaluation metrics. Their papers use TF-GAN to ensure consistent and comparable evaluation metrics. Some of those papers are:

Training a GAN model

Training in TF-GAN typically consists of the following steps:

  1. Specify the input to your networks.
  2. Set up your generator and discriminator using a GANModel.
  3. Specify your loss using a GANLoss.
  4. Create your train ops using a GANTrainOps.
  5. Run your train ops.

At each stage, you can either use TF-GAN's convenience functions, or you can perform the step manually for fine-grained control.

There are various types of GAN setup. For instance, you can train a generator to sample unconditionally from a learned distribution, or you can condition on extra information such as a class label. TF-GAN is compatible with many setups, and we demonstrate in the well-tested examples directory

Maintainers

Authors

Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021