Learning Logic Rules for Document-Level Relation Extraction

Related tags

Deep LearningLogiRE
Overview

LogiRE

Learning Logic Rules for Document-Level Relation Extraction

We propose to introduce logic rules to tackle the challenges of doc-level RE.

Equipped with logic rules, our LogiRE framework can not only explicitly capture long-range semantic dependencies, but also show more interpretability.

We combine logic rules and outputs of neural networks for relation extraction.

drawing

As shown in the example, the relation between kate and Britain can be identified according to the other relations and the listed logic rule.

The overview of LogiRE framework is shown below.

drawing

Data

  • Download the preprocessing script and meta data

    DWIE
    ├── data
    │   ├── annos
    │   └── annos_with_content
    ├── en_core_web_sm-2.3.1
    │   ├── build
    │   ├── dist
    │   ├── en_core_web_sm
    │   ├── en_core_web_sm.egg-info
    │   ├── MANIFEST.in
    │   ├── meta.json
    │   ├── PKG-INFO
    │   ├── setup.cfg
    │   └── setup.py
    ├── glove.6B.100d.txt
    ├── md5sum.txt
    └── read_docred_style.py
    
  • Install Spacy (en_core_web_sm-2.3.1)

    cd en_core_web_sm-2.3.1
    pip install .
  • Download the original data from DWIE

  • Generate docred-style data

    python3 read_docred_style.py

    The docred-style doc-RE data will be generated at DWIE/data/docred-style. Please compare the md5sum codes of generated files with the records in md5sum.txt to make sure you generate the data correctly.

Train & Eval

Requirements

  • pytorch >= 1.7.1
  • tqdm >= 4.62.3
  • transformers >= 4.4.2

Backbone Preparation

The LogiRE framework requires a backbone NN model for the initial probabilistic assessment on each triple.

The probabilistic assessments of the backbone model and other related meta data should be organized in the following format. In other words, please train any doc-RE model with the docred-style RE data before and dump the outputs as below.

{
    'train': [
        {
            'N': <int>,
            'logits': <torch.FloatTensor of size (N, N, R)>,
            'labels': <torch.BoolTensor of size (N, N, R)>,
            'in_train': <torch.BoolTensor of size (N, N, R)>,
        },
        ...
    ],
    'dev': [
        ...
    ]
    'test': [
        ...
    ]
}

Each example contains four items:

  • N: the number of entities in this example.
  • logits: the logits of all triples as a tensor of size (N, N, R). R is the number of relation types (Na excluded)
  • labels: the labels of all triples as a tensor of size (N, N, R).
  • in_train: the in_train masks of all triples as a tensor of size(N, N, R), used for ign f1 evaluation. True indicates the existence of the triple in the training split.

For convenience, we provide the dump of ATLOP as examples. Feel free to download and try it directly.

Train

python3 main.py --mode train \
    --save_dir <the directory for saving logs and checkpoints> \
    --rel_num <the number of relation types (Na excluded)> \
    --ent_num <the number of entity types> \
    --n_iters <the number of iterations for optimization> \
    --max_depth <max depths of the logic rules> \
    --data_dir <the directory of the docred-style data> \
    --backbone_path <the path of the backbone model dump>

Evaluation

python3 main.py --mode test \
    --save_dir <the directory for saving logs and checkpoints> \
    --rel_num <the number of relation types (Na excluded)> \
    --ent_num <the number of entity types> \
    --n_iters <the number of iterations for optimization> \
    --max_depth <max depths of the logic rules> \
    --data_dir <the directory of the docred-style data> \
    --backbone_path <the path of the backbone model dump>

Results

  • LogiRE framework outperforms strong baselines on both relation performance and logical consistency.

    drawing
  • Injecting logic rules can improve long-range dependencies modeling, we show the relation performance on each interval of different entity pair distances. LogiRE framework outperforms the baseline and the gap becomes larger when entity pair distances increase. Logic rules actually serve as shortcuts for capturing long-range semantics in concept-level instead of token-level.

    drawing

Acknowledgements

We sincerely thank RNNLogic which largely inspired us and DWIE & DocRED for providing the benchmarks.

Reference

@inproceedings{ru-etal-2021-learning,
    title = "Learning Logic Rules for Document-Level Relation Extraction",
    author = "Ru, Dongyu  and
      Sun, Changzhi  and
      Feng, Jiangtao  and
      Qiu, Lin  and
      Zhou, Hao  and
      Zhang, Weinan  and
      Yu, Yong  and
      Li, Lei",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.95",
    pages = "1239--1250",
}
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception, IROS 2021

For academic use only. Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception Ziwei Wang, Liyuan Pan, Yonhon Ng, Zheyu Zhuang and Robert Mahony Th

Ziwei Wang 11 Jan 04, 2023
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023