Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

Related tags

Deep LearningCaGCN
Overview

CaGCN

This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration".

Paper Link: https://arxiv.org/abs/2109.14285

Environment

  • python == 3.8.8
  • pytorch == 1.8.1
  • dgl -cuda11.1 == 0.6.1
  • networkx == 2.5
  • numpy == 1.20.2

GPU: GeForce RTX 2080 Ti

CPU: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz

Confidence Calibration

CaGCN

python CaGCN.py --model GCN --hidden 64 --dataset dataset --labelrate labelrate --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3
python CaGCN.py --model GAT --hidden 8 --dataset dataset --labelrate labelrate --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3
  • dataset: including [Cora, Citeseer, Pubmed], required.
  • labelrate: including [20, 40, 60], required.

e.g.,

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 20 --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3
python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 20 --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --l2_for_cal 5e-3

For CoraFull,

python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate labelrate --stage 1 --lr_for_cal 0.01 --l2_for_cal 0.03
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate labelrate --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --l2_for_cal 0.03
  • labelrate: including [20, 40, 60], required.

Uncalibrated model

python train_others.py --model GCN --hidden 64 --dataset dataset --labelrate labelrate --stage 1 
python train_others.py --model GAT --hidden 8 --dataset dataset --labelrate labelrate --stage 1 --dropout 0.6 --lr 0.005
  • dataset: including [Cora, Citeseer, Pubmed, CoraFull], required.
  • labelrate: including [20, 40, 60], required.

e.g.,

python train_others.py --model GCN --hidden 64 --dataset Cora --labelrate 20 --stage 1
python train_others.py --model GAT --hidden 8 --dataset Cora --labelrate 20 --stage 1 --dropout 0.6 --lr 0.005

Temperature scaling & Matring Scaling

python train_others.py --model GCN --scaling_method method --hidden 64 --dataset dataset --labelrate labelrate --stage 1 --lr_for_cal 0.01 --max_iter 50
python train_others.py --model GAT --scaling_method method --hidden 8 --dataset dataset --labelrate labelrate --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --max_iter 50
  • method: including [TS, MS], required.
  • dataset: including [Cora, Citeseer, Pubmed, CoraFull], required.
  • labelrate: including [20, 40, 60], required.

e.g.,

python train_others.py --model GCN --scaling_method TS --hidden 64 --dataset Cora --labelrate 20 --stage 1 --lr_for_cal 0.01 --max_iter 50
python train_others.py --model GAT --scaling_method TS --hidden 8 --dataset Cora --labelrate 20 --dropout 0.6 --lr 0.005 --stage 1 --lr_for_cal 0.01 --max_iter 50

Self-Training

GCN L/C=20

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 20 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Citeseer --labelrate 20 --stage 5 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.9
python CaGCN.py --model GCN --hidden 64 --dataset Pubmed --labelrate 20 --stage 6 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate 20 --stage 4 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.85

GCN L/C=40

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 40 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Citeseer --labelrate 40 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.85
python CaGCN.py --model GCN --hidden 64 --dataset Pubmed --labelrate 40 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate 40 --stage 4 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.99

GCN L/C=60

python CaGCN.py --model GCN --hidden 64 --dataset Cora --labelrate 60 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Citeseer --labelrate 60 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.8
python CaGCN.py --model GCN --hidden 64 --dataset Pubmed --labelrate 60 --stage 3 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.6
python CaGCN.py --model GCN --hidden 64 --dataset CoraFull --labelrate 60 --stage 5 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.9

GAT L/C=20

python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 20 --dropout 0.6 --lr 0.005 --stage 6 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Citeseer --labelrate 20 --dropout 0.6 --lr 0.005 --stage 3 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.7
python CaGCN.py --model GAT --hidden 8 --dataset Pubmed --labelrate 20 --dropout 0.6 --lr 0.005 --weight_decay 1e-3 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8 
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate 20 --dropout 0.6 --lr 0.005 --stage 5 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.95

GAT L/C=40

python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 40 --dropout 0.6 --lr 0.005 --stage 4 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.9
python CaGCN.py --model GAT --hidden 8 --dataset Citeseer --labelrate 40 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Pubmed --labelrate 40 --dropout 0.6 --lr 0.005 --weight_decay 1e-3 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.8 
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate 40 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.95

GAT L/C=60

python CaGCN.py --model GAT --hidden 8 --dataset Cora --labelrate 60 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 200 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Citeseer --labelrate 60 --dropout 0.6 --lr 0.005 --stage 6 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 150 --threshold 0.8
python CaGCN.py --model GAT --hidden 8 --dataset Pubmed --labelrate 60 --dropout 0.6 --lr 0.005 --weight_decay 1e-3 --stage 3 --lr_for_cal 0.001 --l2_for_cal 5e-3 --epoch_for_st 100 --threshold 0.85 
python CaGCN.py --model GAT --hidden 8 --dataset CoraFull --labelrate 60 --dropout 0.6 --lr 0.005 --stage 2 --lr_for_cal 0.001 --l2_for_cal 0.03 --epoch_for_st 500 --threshold 0.95

More Parameters

For more parameters of baselines, please refer to the Parameter.md

Contact

If you have any questions, please feel free to contact me with [email protected]

[ICRA2021] Reconstructing Interactive 3D Scene by Panoptic Mapping and CAD Model Alignment

Interactive Scene Reconstruction Project Page | Paper This repository contains the implementation of our ICRA2021 paper Reconstructing Interactive 3D

97 Dec 28, 2022
Implementation of OpenAI paper with Simple Noise Scale on Fastai V2

README Implementation of OpenAI paper "An Empirical Model of Large-Batch Training" for Fastai V2. The code is based on the batch size finder implement

13 Dec 10, 2021
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023