Official Pytorch implementation for 2021 ICCV paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes" and trained models / data

Overview

Learning Motion Priors for 4D Human Body Capture in 3D Scenes (LEMO)

Official Pytorch implementation for 2021 ICCV (oral) paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes"

[Project page] [Video] [Paper]

Installation

The code has been tested on Ubuntu 18.04, python 3.8.5 and CUDA 10.0. Please download following models:

If you use the temporal fitting code for PROX dataset, please install following packages:

Then run pip install -r requirements.txt to install other dependencies. It is noticed that different versions of smplx and VPoser might influece results.

Datasets

Trained Prior Models

The pretrained models are in the runs.

  • Motion smoothness prior: in runs/15217
  • Motion infilling prior: in runs/59547

The corresponding preprocessing stats are in the preprocess_stats

  • For motion smoothness prior: preprocess_stats/preprocess_stats_smooth_withHand_global_markers.npz
  • For motion infilling prior: preprocess_stats/preprocess_stats_infill_local_markers_4chan.npz

Motion Prior Training

Train the motion smoothness prior model with:

python train_smooth_prior.py --amass_dir PATH/TO/AMASS --body_model_path PATH/TO/SMPLX/MODELS --body_mode=global_markers

Train the motion infilling prior model with:

python train_infill_prior.py --amass_dir PATH/TO/AMASS --body_model_path PATH/TO/SMPLX/MODELS --body_mode=local_markers_4chan

Fitting on AMASS

Stage 1: per-frame fitting, utilize motion infilling prior (e.x., on TotalCapture dataset, from first motion sequence to 100th motion sequence, optimize a motion sequence every 20 motion sequences)

python opt_amass_perframe.py --amass_dir=PATH/TO/AMASS --body_model_path=PATH/TO/SMPLX/MODELS --body_mode=local_markers_4chan --dataset_name=TotalCapture --start=0 --end=100 --step=20 --save_dir=PATH/TO/SAVE/RESULUTS

Stage 2: temporal fitting, utilize motion smoothness and infilling prior (e.x., on TotalCapture dataset, from first motion sequence to 100th motion sequence, optimize a motion sequence every 20 motion sequences)

python opt_amass_tempt.py --amass_dir=PATH/TO/AMASS --body_model_path=PATH/TO/SMPLX/MODELS --body_mode=local_markers_4chan --dataset_name=TotalCapture --start=0 --end=100 --step=20 --perframe_res_dir=PATH/TO/PER/FRAME/RESULTS --save_dir=PATH/TO/SAVE/RESULTS

Make sure that start, end, step, dataset_name are consistent between per-frame and temporal fitting, and save_dir in per frame fitting and perframe_res_dir in temporal fitting are consistent.

Visualization of fitted results:

python vis_opt_amass.py --body_model_path=PATH/TO/SMPLX/MODELS --dataset_name=TotalCapture --start=0 --end=100 --step=20 --load_dir=PATH/TO/FITTED/RESULTS

Set --vis_option=static will visualize a motion sequence in static poses, and set --vis_option=animate will visualize a motion sequence as animations. The folders res_opt_amass_perframe and res_opt_amass_temp provide several fitted sequences of Stage 1 and 2, resp..

Fitting on PROX

Stage 1: per-frame fitting, utilize fitted params from PROX dataset directly

Stage 2: temporal consistent fitting: utilize motion smoothness prior

cd temp_prox
python main_slide.py --config=../cfg_files/PROXD_temp_S2.yaml --vposer_ckpt=/PATH/TO/VPOSER --model_folder=/PATH/TO/SMPLX/MODELS --recording_dir=/PATH/TO/PROX/RECORDINGS --output_folder=/PATH/TO/SAVE/RESULTS

Stage 3: occlusion robust fitting: utilize motion smoothness and infilling prior

cd temp_prox
python main_slide.py --config=../cfg_files/PROXD_temp_S3.yaml --vposer_ckpt=/PATH/TO/VPOSER --model_folder=/PATH/TO/SMPLX/MODELS --recording_dir=/PATH/TO/PROX/RECORDINGS --output_folder=/PATH/TO/SAVE/RESULTS

Visualization of fitted results:

cd temp_prox/
cd viz/
python viz_fitting.py --fitting_dir=/PATH/TO/FITTED/RESULTS --model_folder=/PATH/TO/SMPLX/MODELS --base_dir=/PATH/TO/PROX/DATASETS 

Fitted Results of PROX Dataset

The temporal fitting results on PROX can be downloaded here. It includes 2 file formats:

  • PROXD_temp: PROX format (consistent with original PROX dataset). Each frame fitting result is saved as a single file.
  • PROXD_temp_v2: AMASS format (similar with AMASS dataset). Fitting results of a sequence are saved as a single file.
  • convert_prox_format.py converts the data from PROXD_temp format to PROXD_temp_v2 format and visualizes the converetd format.

TODO

to update evaluation code

Citation

When using the code/figures/data/video/etc., please cite our work

@inproceedings{Zhang:ICCV:2021,
  title = {Learning Motion Priors for 4D Human Body Capture in 3D Scenes},
  author = {Zhang, Siwei and Zhang, Yan and Bogo, Federica and Pollefeys Marc and Tang, Siyu},
  booktitle = {International Conference on Computer Vision (ICCV)},
  month = oct,
  year = {2021}
}

Acknowledgments

This work was supported by the Microsoft Mixed Reality & AI Zurich Lab PhD scholarship. We sincerely thank Shaofei Wang and Jiahao Wang for proofreading.

Relevant Projects

The temporal fitting code for PROX is largely based on the PROX dataset code. Many thanks to this wonderful repo.

Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022