Official Pytorch implementation for 2021 ICCV paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes" and trained models / data

Overview

Learning Motion Priors for 4D Human Body Capture in 3D Scenes (LEMO)

Official Pytorch implementation for 2021 ICCV (oral) paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes"

[Project page] [Video] [Paper]

Installation

The code has been tested on Ubuntu 18.04, python 3.8.5 and CUDA 10.0. Please download following models:

If you use the temporal fitting code for PROX dataset, please install following packages:

Then run pip install -r requirements.txt to install other dependencies. It is noticed that different versions of smplx and VPoser might influece results.

Datasets

Trained Prior Models

The pretrained models are in the runs.

  • Motion smoothness prior: in runs/15217
  • Motion infilling prior: in runs/59547

The corresponding preprocessing stats are in the preprocess_stats

  • For motion smoothness prior: preprocess_stats/preprocess_stats_smooth_withHand_global_markers.npz
  • For motion infilling prior: preprocess_stats/preprocess_stats_infill_local_markers_4chan.npz

Motion Prior Training

Train the motion smoothness prior model with:

python train_smooth_prior.py --amass_dir PATH/TO/AMASS --body_model_path PATH/TO/SMPLX/MODELS --body_mode=global_markers

Train the motion infilling prior model with:

python train_infill_prior.py --amass_dir PATH/TO/AMASS --body_model_path PATH/TO/SMPLX/MODELS --body_mode=local_markers_4chan

Fitting on AMASS

Stage 1: per-frame fitting, utilize motion infilling prior (e.x., on TotalCapture dataset, from first motion sequence to 100th motion sequence, optimize a motion sequence every 20 motion sequences)

python opt_amass_perframe.py --amass_dir=PATH/TO/AMASS --body_model_path=PATH/TO/SMPLX/MODELS --body_mode=local_markers_4chan --dataset_name=TotalCapture --start=0 --end=100 --step=20 --save_dir=PATH/TO/SAVE/RESULUTS

Stage 2: temporal fitting, utilize motion smoothness and infilling prior (e.x., on TotalCapture dataset, from first motion sequence to 100th motion sequence, optimize a motion sequence every 20 motion sequences)

python opt_amass_tempt.py --amass_dir=PATH/TO/AMASS --body_model_path=PATH/TO/SMPLX/MODELS --body_mode=local_markers_4chan --dataset_name=TotalCapture --start=0 --end=100 --step=20 --perframe_res_dir=PATH/TO/PER/FRAME/RESULTS --save_dir=PATH/TO/SAVE/RESULTS

Make sure that start, end, step, dataset_name are consistent between per-frame and temporal fitting, and save_dir in per frame fitting and perframe_res_dir in temporal fitting are consistent.

Visualization of fitted results:

python vis_opt_amass.py --body_model_path=PATH/TO/SMPLX/MODELS --dataset_name=TotalCapture --start=0 --end=100 --step=20 --load_dir=PATH/TO/FITTED/RESULTS

Set --vis_option=static will visualize a motion sequence in static poses, and set --vis_option=animate will visualize a motion sequence as animations. The folders res_opt_amass_perframe and res_opt_amass_temp provide several fitted sequences of Stage 1 and 2, resp..

Fitting on PROX

Stage 1: per-frame fitting, utilize fitted params from PROX dataset directly

Stage 2: temporal consistent fitting: utilize motion smoothness prior

cd temp_prox
python main_slide.py --config=../cfg_files/PROXD_temp_S2.yaml --vposer_ckpt=/PATH/TO/VPOSER --model_folder=/PATH/TO/SMPLX/MODELS --recording_dir=/PATH/TO/PROX/RECORDINGS --output_folder=/PATH/TO/SAVE/RESULTS

Stage 3: occlusion robust fitting: utilize motion smoothness and infilling prior

cd temp_prox
python main_slide.py --config=../cfg_files/PROXD_temp_S3.yaml --vposer_ckpt=/PATH/TO/VPOSER --model_folder=/PATH/TO/SMPLX/MODELS --recording_dir=/PATH/TO/PROX/RECORDINGS --output_folder=/PATH/TO/SAVE/RESULTS

Visualization of fitted results:

cd temp_prox/
cd viz/
python viz_fitting.py --fitting_dir=/PATH/TO/FITTED/RESULTS --model_folder=/PATH/TO/SMPLX/MODELS --base_dir=/PATH/TO/PROX/DATASETS 

Fitted Results of PROX Dataset

The temporal fitting results on PROX can be downloaded here. It includes 2 file formats:

  • PROXD_temp: PROX format (consistent with original PROX dataset). Each frame fitting result is saved as a single file.
  • PROXD_temp_v2: AMASS format (similar with AMASS dataset). Fitting results of a sequence are saved as a single file.
  • convert_prox_format.py converts the data from PROXD_temp format to PROXD_temp_v2 format and visualizes the converetd format.

TODO

to update evaluation code

Citation

When using the code/figures/data/video/etc., please cite our work

@inproceedings{Zhang:ICCV:2021,
  title = {Learning Motion Priors for 4D Human Body Capture in 3D Scenes},
  author = {Zhang, Siwei and Zhang, Yan and Bogo, Federica and Pollefeys Marc and Tang, Siyu},
  booktitle = {International Conference on Computer Vision (ICCV)},
  month = oct,
  year = {2021}
}

Acknowledgments

This work was supported by the Microsoft Mixed Reality & AI Zurich Lab PhD scholarship. We sincerely thank Shaofei Wang and Jiahao Wang for proofreading.

Relevant Projects

The temporal fitting code for PROX is largely based on the PROX dataset code. Many thanks to this wonderful repo.

Code Release for the paper "TriBERT: Full-body Human-centric Audio-visual Representation Learning for Visual Sound Separation"

TriBERT This repository contains the code for the NeurIPS 2021 paper titled "TriBERT: Full-body Human-centric Audio-visual Representation Learning for

UBC Computer Vision Group 8 Aug 31, 2022
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 05, 2023
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds PCAM: Product of Cross-Attention Matrices for Rigid Registration of P

valeo.ai 24 May 31, 2022
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022