InvTorch: memory-efficient models with invertible functions

Related tags

Deep Learninginvtorch
Overview

InvTorch: Memory-Efficient Invertible Functions

This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible functions. So, not only the intermediate activations will be released from memory. The input tensors get deallocated and recomputed later using the inverse function only in the backward pass. This is useful in extreme situations where more compute is traded with memory. However, there are few caveats to consider which are detailed here.

Installation

InvTorch has minimal dependencies. It only requires PyTorch version 1.10.0 or later.

conda install pytorch==1.10.0 torchvision torchaudio cudatoolkit=11.3 -c pytorch
pip install invtorch

Basic Usage

The main module that we are interested in is InvertibleModule which inherits from torch.nn.Module. Subclass it to implement your own invertible code.

import torch
from torch import nn
from invtorch import InvertibleModule


class InvertibleLinear(InvertibleModule):
    def __init__(self, in_features, out_features):
        super().__init__(invertible=True, checkpoint=True)
        self.weight = nn.Parameter(torch.randn(out_features, in_features))
        self.bias = nn.Parameter(torch.randn(out_features))

    def function(self, inputs):
        outputs = inputs @ self.weight.T + self.bias
        requires_grad = self.do_require_grad(inputs, self.weight, self.bias)
        return outputs.requires_grad_(requires_grad)

    def inverse(self, outputs):
        return (outputs - self.bias) @ self.weight.T.pinverse()

Structure

You can immediately notice few differences to the regular PyTorch module here. There is no longer a need to define forward(). Instead, it is replaced with function(*inputs). Additionally, it is necessary to define its inverse function as inverse(*outputs). Both methods can only take one or more positional arguments and return a torch.Tensor or a tuple of outputs which can have anything including tensors.

Requires Gradient

function() must manually call .requires_grad_(True/False) on all output tensors. The forward pass is run in no_grad mode and there is no way to detect which output need gradients without tracing. It is possible to infer this from requires_grad values of the inputs and self.parameters(). The above code uses do_require_grad() which returns True if any input did require gradient.

Example

Now, this model is ready to be instantiated and used directly.

x = torch.randn(10, 3)
model = InvertibleLinear(3, 5)
print('Is invertible:', model.check_inverse(x))

y = model(x)
print('Output requires_grad:', y.requires_grad)
print('Input was freed:', x.storage().size() == 0)

y.backward(torch.randn_like(y))
print('Input was restored:', x.storage().size() != 0)

Checkpoint and Invertible Modes

InvertibleModule has two flags which control the mode of operation; checkpoint and invertible. If checkpoint was set to False, or when working in no_grad mode, or no input or parameter has requires_grad set to True, it acts exactly as a normal PyTorch module. Otherwise, the model is either invertible or an ordinary checkpoint depending on whether invertible is set to True or False, respectively. Those, flags can be changed at any time during operation without any repercussions.

Limitations

Under the hood, InvertibleModule uses invertible_checkpoint(); a low-level implementation which allows it to function. There are few considerations to keep in mind when working with invertible checkpoints and non-materialized tensors. Please, refer to the documentation in the code for more details.

Overriding forward()

Although forward() is now doing important things to ensure the validity of the results when calling invertible_checkpoint(), it can still be overridden. The main reason of doing so is to provide a more user-friendly interface; function signature and output format. For example, function() could return extra outputs that are not needed in the module outputs but are essential for correctly computing the inverse(). In such case, define forward() to wrap outputs = super().forward(*inputs) more cleanly.

TODOs

Here are few feature ideas that could be implemented to enrich the utility of this package:

  • Add more basic operations and modules
  • Add coupling and interleave -based invertible operations
  • Add more checks to help the user in debugging more features
  • Allow picking some inputs to not be freed in invertible mode
  • Context-manager to temporarily change the mode of operation
  • Implement dynamic discovery for outputs that requires_grad
  • Develop an automatic mode optimization for a network for various objectives
You might also like...
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Official and maintained implementation of the paper
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

Efficient-GlobalPointer - Pytorch Efficient GlobalPointer
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

Releases(v0.5.0)
Owner
Modar M. Alfadly
Deep learning researcher interested in understanding neural networks
Modar M. Alfadly
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques

Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques This repository is derived from the NMTGMinor

Tu Anh Dinh 1 Sep 07, 2022
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022