“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Overview

Data Augmentation for Cross-Domain Named Entity Recognition

Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio

License: MIT

This repository contains the implementations of the system described in the paper "Data Augmentation for Cross-Domain Named Entity Recognition" at EMNLP 2021 conference.

The main contribution of this paper is a novel neural architecture that can learn the textual patterns and effectively transform the text from a high-resource to a low-resource domain. Please refer to the paper for details.

Installation

We have updated the code to work with Python 3.9, Pytorch 1.9, and CUDA 11.1. If you use conda, you can set up the environment as follows:

conda create -n style_NER python==3.9
conda activate style_NER
conda install pytorch==1.9 cudatoolkit=11.1 -c pytorch

Also, install the dependencies specified in the requirements.txt:

pip install -r requirements.txt

Data

Please download the data with the following links: OntoNotes-5.0-NER-BIO and Temporal Twitter Corpus. We provide two toy datasets under the data/linearized_domain dictory for cross-domain mapping experiments and data/ner directory for NER experiments. After downloading the data with the links above, you may need to preprocess it so that it can have the same format as toy datasets and put them under the corresponding directory.

Data pre-processing

For data pre-processing, we provide some functions under the src/commons/preproc_domain.py and src/commons/preproc_ner.py directory. You can use them to convert the data to the json format for cross-domain mapping experiments.

Data post-processing

After generating the data, you may want to use the code under the src/commons/postproc_domain.py directory to convert the data from json to CoNLL format for named entity recognition experiments.

Running

There are two main stages to run this project.

  1. Cross-domain mapping with cross-domain autoencoder
  2. Named entity recognition with sequencel labeling model

1. Cross-domain Mapping

Training

You can train a model from pre-defined config files in this repo with the following command:

CUDA_VISIBLE_DEVICES=[gpu_id] python src/exp_domain/main.py --config configs/exp_domain/cdar1.0-nw-sm.json

The code saves a model checkpoint after every epoch if the model improves (either lower loss or higher metric). You will notice that a directory is created using the experiment id (e.g. style_NER/checkpoints/cdar1.0-nw-sm/). You can resume training by running the same command.

Two phases training: our training algorithm includes two phases: 1) in the first phase, we train the model with only denoising reconstruction and domain classification, and 2) in the second phase, we train the model together with denoising reconstruction, detransforming reconstruction, and the domain classification. To do this, you can simply set lambda_cross as 0 for the first phase and 1 for the second phase in the config file.

    ...
    "lambda_coef":{
        "lambda_auto": 1.0,
        "lambda_adv": 10.0,
        "lambda_cross": 1.0
    }
    ...
Evaluate

To evaluate the model, use --mode eval (default: train):

CUDA_VISIBLE_DEVICES=[gpu_id] python src/exp_domain/main.py --config configs/exp_domain/cdar1.0-nw-sm.json --mode eval
Generation

To evaluate the model, use --mode generate (default: train):

CUDA_VISIBLE_DEVICES=[gpu_id] python src/exp_domain/main.py --config configs/exp_domain/cdar1.0-nw-sm.json --mode generate

2. Named Entity Recognition

We fine-tune a sequence labeling model (BERT + Linear) to evaluate our cross-domain mapping method. After generating the data, you can add the path of the generated data into the configuration file and run the code with the following command:

CUDA_VISIBLE_DEVICES=[gpu_id] python src/exp_ner/main.py --config configs/exp_ner/ner1.0-nw-sm.json

Citation

(Comming soon...)

Contact

Feel free to get in touch via email to [email protected].

Owner
<a href=[email protected]">
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"

Learning to Bootstrap for Combating Label Noise This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise

21 Apr 09, 2022
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022