General Vision Benchmark, a project from OpenGVLab

Overview

Introduction

  • We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model evaluation.
  • It is recommended to evaluate with low-data regime, using only 10% training data.
  • The parameters of model backbone will be frozen during training, as known as 'linear probe'.
  • Face Detection and Depth Estimation is not provided for now, you may evaluate via official repo if needed.
  • Specifically, we use central_model.py in our repo to represent the implementation of Up-G models.

Task Supported

  • Object Classification
  • Object Detection (VOC Detection)
  • Pedestrian Detection (CityPersons Detection)
  • Semantic Segmentation (VOC Segmentation)
  • Face Detection (WiderFace Detection)
  • Depth Estimation (Kitti/NYU-v2 Depth Estimation)

Installation

Requirements

Install Dependencies

a. Create a conda virtual environment and activate it.

conda create -n open-mmlab python=3.8 -y
conda activate open-mmlab

b. Install PyTorch and torchvision following the official instructions, e.g.:

conda install pytorch torchvision -c pytorch
Make sure that your compilation CUDA version and runtime CUDA version match.
You can check the supported CUDA version for precompiled packages on the
[PyTorch website](https://pytorch.org/).

c. Install openmm package via pip (mmcls, mmdet, mmseg):

pip install mmcls
pip install mmdet
pip install mmsegmetation

Usage

This section provide basic tutorials about the usage of GV-B.

Prepare datasets

For each evaluation task, you can follow the official repo tutorial for data preparation.

mmclassification

mmdetection

mmsegmentation

Model evaluation

We use MIM to submit evaluation in GV-B.

a.If you run MMClassification on a cluster managed with slurm, you can use the script mim_slurm_train.sh. (This script also supports single machine training.)

sh tools/mim_slurm_train.sh $PARTITION $TASK $CONFIG $WORK_DIR

b.If you run on w/o slurm. (More details can be found in docs of openmim)

PYTHONPATH='.':$PYTHONPATH mim train $TASK $CONFIG $WORK_DIR
  • PARTITION: The partition you are using
  • WORK_DIR: The directory to save logs and checkpoints
  • CONFIG: Config files corresponding to tasks.

Detailed Tutorials

Currently, we provide tutorials for users.

Benchmark(with Hyperparameter searching)

CLS DET SEG DEP
10% data Cifar10 Cifar100 Food Pets Flowers Sun Cars Dtd Caltech Aircraft Svhn Eurosat Resisc45 Retinopathy Fer2013 Ucf101 Gtsrb Pcam Imagenet Kinetics700 VOC07+12 WIDER FACE CityPersons VOC2012 KITTI NYUv2
Up-A R50 92.4 73.5 75.8 85.7 94.6 57.9 52.7 65.0 88.5 28.7 61.4 93.8 82.9 73.8 55.0 71.1 75.1 82.9 71.9 35.2 76.3 90.3/88.3/70.7 24.6/59.0 62.54 3.181 0.456
MN-B4 96.1 82.9 84.3 89.8 98.3 66.0 61.4 66.8 92.8 32.5 60.4 92.7 85.8 75.6 56.5 76.9 74.4 84.3 77.2 39.4 74.9 89.3/87.6/71.4 26.5/61.8 65.71 3.565 0.482
MN-B15 98.2 87.8 93.9 92.8 99.6 72.3 59.4 70.0 93.8 64.8 58.6 95.3 91.9 77.9 62.8 85.4 76.2 87.8 86.0 52.9 78.4 93.6/91.8/77.2 17.7/49.5 60.68 2.423 0.383
Up-E C-R50 91.9 71.2 80.7 88.8 94.0 57.4 67.9 62.7 85.5 73.9 57.6 93.7 83.6 75.4 54.1 69.6 73.9 85.7 72.5 34.6 72.2 89.7/87.6/68.1 22.4/58.3 57.66 3.214 0.501
D-R50 86.4 57.3 53.9 31.4 44.0 39.8 8.6 44.6 72.5 15.8 64.2 89.1 72.8 73.6 46.6 57.4 67.5 81.7 45.0 25.2 87.7 93.8/92.0/75.5 15.8/41.5 62.3 3.09 0.45
S-R50 78.3 46.6 45.1 24.2 33.9 38.0 5.0 41.4 50.2 8.5 51.5 89.9 76.4 74.0 44.8 42.0 64.0 80.8 34.9 19.7 75.0 87.4/85.7/66.4 19.6/53.3 71.9 3.12 0.45
C-MN-B4 96.7 83.2 89.2 91.9 98.2 66.7 67.7 66.3 91.9 77.2 57.8 94.4 88.0 77.0 56.6 78.5 77.3 85.6 80.5 44.2 73.7 89.6/88.0/71.1 30.3/65.0 65.8 3.54 0.46
D-MN-B4 91.5 67.0 61.4 44.4 57.2 41.8 12.1 41.2 80.6 25.1 68.0 90.7 74.6 74.3 50.3 61.7 74.2 81.9 57.0 29.3 89.3 94.6/92.6/76.5 14.0/43.8 73.1 3.05 0.40
S-MN-B4 83.5 57.2 68.3 70.8 85.8 52.9 25.9 52.8 81.6 17.7 56.1 91.3 83.6 74.5 49.0 55.2 68.0 84.3 61.0 27.4 78.7 89.5/87.9/71.4 19.4/53.0 79.6 3.06 0.41
C-MN-B-15 98.7 90.1 94.7 95.1 99.7 75.7 74.9 73.6 94.4 91.8 66.7 96.2 92.8 77.6 62.3 87.7 83.3 87.5 87.2 54.7 80.4 93.2/91.4/75.7 29.5/59.9 70.6 2.63 0.37
D-MN-B-15 92.2 67.9 69.0 33.9 59.5 45.4 13.8 46.3 82.0 26.6 65.4 90.1 79.1 76.0 53.2 63.7 74.4 83.3 62.2 33.7 89.4 95.8/94.4/80.1 10.5/42.4 77.2 2.72 0.37
Up-G R50 92.9 73.7 81.1 88.9 94.0 58.6 68.6 63.0 86.1 74.0 57.9 94.4 84.0 75.7 54.3 70.8 74.3 85.9 72.6 34.8 87.7 93.9/92.2/77.0 14.7/46.0 66.19 2.835 0.39
MN-B4 96.7 83.9 89.2 92.1 98.2 66.7 67.7 66.5 91.9 77.2 57.8 94.4 88.0 77.0 57.1 79 77.7 86 80.5 44.2 89.1 94.9/92.8/76.5 12.0/50.5 71.4 2.94 0.40
MN-B15 98.7 90.4 94.5 95.4 99.7 74.4 75.4 74.2 94.5 91.8 66.7 96.3 92.7 77.9 63.1 88 83.6 88 87.1 54.7 89.8 95.9/94.2/79.6 10.5/41.3 77.3 2.71 0.37
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
Code for paper: Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks

Group-CAM By Zhang, Qinglong and Rao, Lu and Yang, Yubin [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the o

zhql 98 Nov 16, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023