LexGLUE: A Benchmark Dataset for Legal Language Understanding in English

Overview

LexGLUE: A Benchmark Dataset for Legal Language Understanding in English ⚖️ 🏆 🧑‍🎓 👩‍⚖️

LexGLUE Graphic

Dataset Summary

Inspired by the recent widespread use of the GLUE multi-task benchmark NLP dataset (Wang et al., 2018), the subsequent more difficult SuperGLUE (Wang et al., 2109), other previous multi-task NLP benchmarks (Conneau and Kiela,2018; McCann et al., 2018), and similar initiatives in other domains (Peng et al., 2019), we introduce LexGLUE, a benchmark dataset to evaluate the performance of NLP methods in legal tasks. LexGLUE is based on seven existing legal NLP datasets, selected using criteria largely from SuperGLUE.

We anticipate that more datasets, tasks, and languages will be added in later versions of LexGLUE. As more legal NLP datasets become available, we also plan to favor datasets checked thoroughly for validity (scores reflecting real-life performance), annotation quality, statistical power,and social bias (Bowman and Dahl, 2021).

As in GLUE and SuperGLUE (Wang et al., 2109) one of our goals is to push towards generic (or foundation) models that can cope with multiple NLP tasks, in our case legal NLP tasks,possibly with limited task-specific fine-tuning. An-other goal is to provide a convenient and informative entry point for NLP researchers and practitioners wishing to explore or develop methods for legalNLP. Having these goals in mind, the datasets we include in LexGLUE and the tasks they address have been simplified in several ways, discussed below, to make it easier for newcomers and generic models to address all tasks. We provide PythonAPIs integrated with Hugging Face (Wolf et al.,2020; Lhoest et al., 2021) to easily import all the datasets, experiment with and evaluate their performance.

By unifying and facilitating the access to a set of law-related datasets and tasks, we hope to attract not only more NLP experts, but also more interdisciplinary researchers (e.g., law doctoral students willing to take NLP courses). More broadly, we hope LexGLUE will speed up the adoption and transparent evaluation of new legal NLP methods and approaches in the commercial sector too. Indeed, there have been many commercial press releases in legal-tech industry, but almost no independent evaluation of the veracity of the performance of various machine learning and NLP-based offerings. A standard publicly available benchmark would also allay concerns of undue influence in predictive models, including the use of metadata which the relevant law expressly disregards.

If you participate, use the LexGLUE benchmark, or our experimentation library, please cite:

Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopoulos, Daniel Martin Katz, and Nikolaos Aletras. LexGLUE: A Benchmark Dataset for Legal Language Understanding in English. 2021. arXiv: 2110.00976.

@article{chalkidis-etal-2021-lexglue,
        title={LexGLUE: A Benchmark Dataset for Legal Language Understanding in English}, 
        author={Chalkidis, Ilias and Jana, Abhik and Hartung, Dirk and
        Bommarito, Michael and Androutsopoulos, Ion and Katz, Daniel Martin and
        Aletras, Nikolaos},
        year={2021},
        eprint={2110.00976},
        archivePrefix={arXiv},
        primaryClass={cs.CL},
        note = {arXiv: 2110.00976},
}

Supported Tasks

Dataset Source Sub-domain Task Type Training/Dev/Test Instances Classes
ECtHR (Task A) Chalkidis et al. (2019) ECHR Multi-label classification 9,000/1,000/1,000 10+1
ECtHR (Task B) Chalkidis et al. (2021a) ECHR Multi-label classification 9,000/1,000/1,000 10
SCOTUS Spaeth et al. (2020) US Law Multi-class classification 5,000/1,400/1,400 14
EUR-LEX Chalkidis et al. (2021b) EU Law Multi-label classification 55,000/5,000/5,000 100
LEDGAR Tuggener et al. (2020) Contracts Multi-class classification 60,000/10,000/10,000 100
UNFAIR-ToS Lippi et al. (2019) Contracts Multi-label classification 5,532/2,275/1,607 8
CaseHOLD Zheng et al. (2021) US Law Multiple choice QA 45,000/3,900/3,900 n/a

ECtHR (Task A)

The European Court of Human Rights (ECtHR) hears allegations that a state has breached human rights provisions of the European Convention of Human Rights (ECHR). For each case, the dataset provides a list of factual paragraphs (facts) from the case description. Each case is mapped to articles of the ECHR that were violated (if any).

ECtHR (Task B)

The European Court of Human Rights (ECtHR) hears allegations that a state has breached human rights provisions of the European Convention of Human Rights (ECHR). For each case, the dataset provides a list of factual paragraphs (facts) from the case description. Each case is mapped to articles of ECHR that were allegedly violated (considered by the court).

SCOTUS

The US Supreme Court (SCOTUS) is the highest federal court in the United States of America and generally hears only the most controversial or otherwise complex cases which have not been sufficiently well solved by lower courts. This is a single-label multi-class classification task, where given a document (court opinion), the task is to predict the relevant issue areas. The 14 issue areas cluster 278 issues whose focus is on the subject matter of the controversy (dispute).

EUR-LEX

European Union (EU) legislation is published in EUR-Lex portal. All EU laws are annotated by EU's Publications Office with multiple concepts from the EuroVoc thesaurus, a multilingual thesaurus maintained by the Publications Office. The current version of EuroVoc contains more than 7k concepts referring to various activities of the EU and its Member States (e.g., economics, health-care, trade). Given a document, the task is to predict its EuroVoc labels (concepts).

LEDGAR

LEDGAR dataset aims contract provision (paragraph) classification. The contract provisions come from contracts obtained from the US Securities and Exchange Commission (SEC) filings, which are publicly available from EDGAR. Each label represents the single main topic (theme) of the corresponding contract provision.

UNFAIR-ToS

The UNFAIR-ToS dataset contains 50 Terms of Service (ToS) from on-line platforms (e.g., YouTube, Ebay, Facebook, etc.). The dataset has been annotated on the sentence-level with 8 types of unfair contractual terms (sentences), meaning terms that potentially violate user rights according to the European consumer law.

CaseHOLD

The CaseHOLD (Case Holdings on Legal Decisions) dataset includes multiple choice questions about holdings of US court cases from the Harvard Law Library case law corpus. Holdings are short summaries of legal rulings accompany referenced decisions relevant for the present case. The input consists of an excerpt (or prompt) from a court decision, containing a reference to a particular case, while the holding statement is masked out. The model must identify the correct (masked) holding statement from a selection of five choices.

Leaderboard

Dataset ECtHR Task A ECtHR Task B SCOTUS EUR-LEX LEDGAR UNFAIR-ToS CaseHOLD
Model μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1
BERT (Devlin et al., 2018) 71.4 / 64.0 87.6 / 77.8 70.5 / 60.9 71.6 / 55.6 87.7 / 82.2 87.5 / 81.0 70.7
RoBERTa (Liu et al., 2019) 69.5 / 60.7 87.2 / 77.3 70.8 / 61.2 71.8 / 57.5 87.9 / 82.1 87.7 / 81.5 71.7
DeBERTa (He et al., 2021) 69.1 / 61.2 87.4 / 77.3 70.0 / 60.0 72.3 / 57.2 87.9 / 82.0 87.2 / 78.8 72.1
Longformer (Beltagy et al., 2020) 69.6 / 62.4 88.0 / 77.8 72.2 / 62.5 71.9 / 56.7 87.7 / 82.3 87.7 / 80.1 72.0
BigBird (Zaheer et al., 2021) 70.5 / 63.8 88.1 / 76.6 71.7 / 61.4 71.8 / 56.6 87.7 / 82.1 87.7 / 80.2 70.4
Legal-BERT (Chalkidis et al., 2020) 71.2 / 64.6 88.0 / 77.2 76.2 / 65.8 72.2 / 56.2 88.1 / 82.7 88.6 / 82.3 75.1
CaseLaw-BERT (Zheng et al., 2021) 71.2 / 64.2 88.0 / 77.5 76.4 / 66.2 71.0 / 55.9 88.0 / 82.3 88.3 / 81.0 75.6

Frequently Asked Questions (FAQ)

Where are the datasets?

We provide access to LexGLUE on Hugging Face Datasets (Lhoest et al., 2021) at https://huggingface.co/datasets/lex_glue.

For example to load the SCOTUS Spaeth et al. (2020) dataset, you first simply install the datasets python library and then make the following call:

from datasets import load_dataset 
dataset = load_dataset("lex_glue", "scotus")

How to run experiments?

Furthermore, to make reproducing the results for the already examined models or future models even easier, we release our code in this repository. In folder /experiments, there are Python scripts, relying on the Hugging Face Transformers library, to run and evaluate any Transformer-based model (e.g., BERT, RoBERTa, LegalBERT, and their hierarchical variants, as well as, Longforrmer, and BigBird). We also provide bash scripts in folder /scripts to replicate the experiments for each dataset with 5 randoms seeds, as we did for the reported results for the original leaderboard.

For example to replicate the results for RoBERTa (Liu et al., 2019) on UNFAIR-ToS Lippi et al. (2019), you have to configure the relevant bash script (run_unfair_tos.sh):

> nano run_unfair_tos.sh
GPU_NUMBER=1
MODEL_NAME='roberta-base'
LOWER_CASE='False'
BATCH_SIZE=8
ACCUMULATION_STEPS=1
TASK='unfair_tos'

and then run it:

> sh run_unfair_tos.sh

How to participate?

We are currently still lacking some technical infrastructure, e.g., an integrated submission environment comprised of an automated evaluation and an automatically updated leaderboard. We plan to develop the necessary publicly available web infrastructure extend the public infrastructure of LexGLUE in the near future.

In the mean-time, we ask participants to re-use and expand our code to submit new results, if possible, and raise a new issue in our repository (https://github.com/coastalcph/lex-glue/issues/new) presenting their results, providing the auto-generated result logs and the relevant publication (or pre-print), if available, accompanied with a pull request including the code amendments that are needed to reproduce their experiments. Upon reviewing your results, we'll update the public leaderboard accordingly.

I still have open questions...

Please post your question on Discussions section or communicate with the corresponding author via e-mail.

Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022