LexGLUE: A Benchmark Dataset for Legal Language Understanding in English

Overview

LexGLUE: A Benchmark Dataset for Legal Language Understanding in English ⚖️ 🏆 🧑‍🎓 👩‍⚖️

LexGLUE Graphic

Dataset Summary

Inspired by the recent widespread use of the GLUE multi-task benchmark NLP dataset (Wang et al., 2018), the subsequent more difficult SuperGLUE (Wang et al., 2109), other previous multi-task NLP benchmarks (Conneau and Kiela,2018; McCann et al., 2018), and similar initiatives in other domains (Peng et al., 2019), we introduce LexGLUE, a benchmark dataset to evaluate the performance of NLP methods in legal tasks. LexGLUE is based on seven existing legal NLP datasets, selected using criteria largely from SuperGLUE.

We anticipate that more datasets, tasks, and languages will be added in later versions of LexGLUE. As more legal NLP datasets become available, we also plan to favor datasets checked thoroughly for validity (scores reflecting real-life performance), annotation quality, statistical power,and social bias (Bowman and Dahl, 2021).

As in GLUE and SuperGLUE (Wang et al., 2109) one of our goals is to push towards generic (or foundation) models that can cope with multiple NLP tasks, in our case legal NLP tasks,possibly with limited task-specific fine-tuning. An-other goal is to provide a convenient and informative entry point for NLP researchers and practitioners wishing to explore or develop methods for legalNLP. Having these goals in mind, the datasets we include in LexGLUE and the tasks they address have been simplified in several ways, discussed below, to make it easier for newcomers and generic models to address all tasks. We provide PythonAPIs integrated with Hugging Face (Wolf et al.,2020; Lhoest et al., 2021) to easily import all the datasets, experiment with and evaluate their performance.

By unifying and facilitating the access to a set of law-related datasets and tasks, we hope to attract not only more NLP experts, but also more interdisciplinary researchers (e.g., law doctoral students willing to take NLP courses). More broadly, we hope LexGLUE will speed up the adoption and transparent evaluation of new legal NLP methods and approaches in the commercial sector too. Indeed, there have been many commercial press releases in legal-tech industry, but almost no independent evaluation of the veracity of the performance of various machine learning and NLP-based offerings. A standard publicly available benchmark would also allay concerns of undue influence in predictive models, including the use of metadata which the relevant law expressly disregards.

If you participate, use the LexGLUE benchmark, or our experimentation library, please cite:

Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopoulos, Daniel Martin Katz, and Nikolaos Aletras. LexGLUE: A Benchmark Dataset for Legal Language Understanding in English. 2021. arXiv: 2110.00976.

@article{chalkidis-etal-2021-lexglue,
        title={LexGLUE: A Benchmark Dataset for Legal Language Understanding in English}, 
        author={Chalkidis, Ilias and Jana, Abhik and Hartung, Dirk and
        Bommarito, Michael and Androutsopoulos, Ion and Katz, Daniel Martin and
        Aletras, Nikolaos},
        year={2021},
        eprint={2110.00976},
        archivePrefix={arXiv},
        primaryClass={cs.CL},
        note = {arXiv: 2110.00976},
}

Supported Tasks

Dataset Source Sub-domain Task Type Training/Dev/Test Instances Classes
ECtHR (Task A) Chalkidis et al. (2019) ECHR Multi-label classification 9,000/1,000/1,000 10+1
ECtHR (Task B) Chalkidis et al. (2021a) ECHR Multi-label classification 9,000/1,000/1,000 10
SCOTUS Spaeth et al. (2020) US Law Multi-class classification 5,000/1,400/1,400 14
EUR-LEX Chalkidis et al. (2021b) EU Law Multi-label classification 55,000/5,000/5,000 100
LEDGAR Tuggener et al. (2020) Contracts Multi-class classification 60,000/10,000/10,000 100
UNFAIR-ToS Lippi et al. (2019) Contracts Multi-label classification 5,532/2,275/1,607 8
CaseHOLD Zheng et al. (2021) US Law Multiple choice QA 45,000/3,900/3,900 n/a

ECtHR (Task A)

The European Court of Human Rights (ECtHR) hears allegations that a state has breached human rights provisions of the European Convention of Human Rights (ECHR). For each case, the dataset provides a list of factual paragraphs (facts) from the case description. Each case is mapped to articles of the ECHR that were violated (if any).

ECtHR (Task B)

The European Court of Human Rights (ECtHR) hears allegations that a state has breached human rights provisions of the European Convention of Human Rights (ECHR). For each case, the dataset provides a list of factual paragraphs (facts) from the case description. Each case is mapped to articles of ECHR that were allegedly violated (considered by the court).

SCOTUS

The US Supreme Court (SCOTUS) is the highest federal court in the United States of America and generally hears only the most controversial or otherwise complex cases which have not been sufficiently well solved by lower courts. This is a single-label multi-class classification task, where given a document (court opinion), the task is to predict the relevant issue areas. The 14 issue areas cluster 278 issues whose focus is on the subject matter of the controversy (dispute).

EUR-LEX

European Union (EU) legislation is published in EUR-Lex portal. All EU laws are annotated by EU's Publications Office with multiple concepts from the EuroVoc thesaurus, a multilingual thesaurus maintained by the Publications Office. The current version of EuroVoc contains more than 7k concepts referring to various activities of the EU and its Member States (e.g., economics, health-care, trade). Given a document, the task is to predict its EuroVoc labels (concepts).

LEDGAR

LEDGAR dataset aims contract provision (paragraph) classification. The contract provisions come from contracts obtained from the US Securities and Exchange Commission (SEC) filings, which are publicly available from EDGAR. Each label represents the single main topic (theme) of the corresponding contract provision.

UNFAIR-ToS

The UNFAIR-ToS dataset contains 50 Terms of Service (ToS) from on-line platforms (e.g., YouTube, Ebay, Facebook, etc.). The dataset has been annotated on the sentence-level with 8 types of unfair contractual terms (sentences), meaning terms that potentially violate user rights according to the European consumer law.

CaseHOLD

The CaseHOLD (Case Holdings on Legal Decisions) dataset includes multiple choice questions about holdings of US court cases from the Harvard Law Library case law corpus. Holdings are short summaries of legal rulings accompany referenced decisions relevant for the present case. The input consists of an excerpt (or prompt) from a court decision, containing a reference to a particular case, while the holding statement is masked out. The model must identify the correct (masked) holding statement from a selection of five choices.

Leaderboard

Dataset ECtHR Task A ECtHR Task B SCOTUS EUR-LEX LEDGAR UNFAIR-ToS CaseHOLD
Model μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1
BERT (Devlin et al., 2018) 71.4 / 64.0 87.6 / 77.8 70.5 / 60.9 71.6 / 55.6 87.7 / 82.2 87.5 / 81.0 70.7
RoBERTa (Liu et al., 2019) 69.5 / 60.7 87.2 / 77.3 70.8 / 61.2 71.8 / 57.5 87.9 / 82.1 87.7 / 81.5 71.7
DeBERTa (He et al., 2021) 69.1 / 61.2 87.4 / 77.3 70.0 / 60.0 72.3 / 57.2 87.9 / 82.0 87.2 / 78.8 72.1
Longformer (Beltagy et al., 2020) 69.6 / 62.4 88.0 / 77.8 72.2 / 62.5 71.9 / 56.7 87.7 / 82.3 87.7 / 80.1 72.0
BigBird (Zaheer et al., 2021) 70.5 / 63.8 88.1 / 76.6 71.7 / 61.4 71.8 / 56.6 87.7 / 82.1 87.7 / 80.2 70.4
Legal-BERT (Chalkidis et al., 2020) 71.2 / 64.6 88.0 / 77.2 76.2 / 65.8 72.2 / 56.2 88.1 / 82.7 88.6 / 82.3 75.1
CaseLaw-BERT (Zheng et al., 2021) 71.2 / 64.2 88.0 / 77.5 76.4 / 66.2 71.0 / 55.9 88.0 / 82.3 88.3 / 81.0 75.6

Frequently Asked Questions (FAQ)

Where are the datasets?

We provide access to LexGLUE on Hugging Face Datasets (Lhoest et al., 2021) at https://huggingface.co/datasets/lex_glue.

For example to load the SCOTUS Spaeth et al. (2020) dataset, you first simply install the datasets python library and then make the following call:

from datasets import load_dataset 
dataset = load_dataset("lex_glue", "scotus")

How to run experiments?

Furthermore, to make reproducing the results for the already examined models or future models even easier, we release our code in this repository. In folder /experiments, there are Python scripts, relying on the Hugging Face Transformers library, to run and evaluate any Transformer-based model (e.g., BERT, RoBERTa, LegalBERT, and their hierarchical variants, as well as, Longforrmer, and BigBird). We also provide bash scripts in folder /scripts to replicate the experiments for each dataset with 5 randoms seeds, as we did for the reported results for the original leaderboard.

For example to replicate the results for RoBERTa (Liu et al., 2019) on UNFAIR-ToS Lippi et al. (2019), you have to configure the relevant bash script (run_unfair_tos.sh):

> nano run_unfair_tos.sh
GPU_NUMBER=1
MODEL_NAME='roberta-base'
LOWER_CASE='False'
BATCH_SIZE=8
ACCUMULATION_STEPS=1
TASK='unfair_tos'

and then run it:

> sh run_unfair_tos.sh

How to participate?

We are currently still lacking some technical infrastructure, e.g., an integrated submission environment comprised of an automated evaluation and an automatically updated leaderboard. We plan to develop the necessary publicly available web infrastructure extend the public infrastructure of LexGLUE in the near future.

In the mean-time, we ask participants to re-use and expand our code to submit new results, if possible, and raise a new issue in our repository (https://github.com/coastalcph/lex-glue/issues/new) presenting their results, providing the auto-generated result logs and the relevant publication (or pre-print), if available, accompanied with a pull request including the code amendments that are needed to reproduce their experiments. Upon reviewing your results, we'll update the public leaderboard accordingly.

I still have open questions...

Please post your question on Discussions section or communicate with the corresponding author via e-mail.

Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud.

Lidar with Velocity A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud. related paper: Lidar with Velocity : Motion

ISEE Research Group 164 Dec 30, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
SBINN: Systems-biology informed neural network

SBINN: Systems-biology informed neural network The source code for the paper M. Daneker, Z. Zhang, G. E. Karniadakis, & L. Lu. Systems biology: Identi

Lu Group 15 Nov 19, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
OCR-D wrapper for detectron2 based segmentation models

ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm

Robert Sachunsky 13 Dec 06, 2022
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022