PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

Overview

1-bit Wide ResNet

PyTorch implementation of training 1-bit Wide ResNets from this paper:

Training wide residual networks for deployment using a single bit for each weight by Mark D. McDonnell at ICLR 2018

https://openreview.net/forum?id=rytNfI1AZ

https://arxiv.org/abs/1802.08530

The idea is very simple but surprisingly effective for training ResNets with binary weights. Here is the proposed weight parameterization as PyTorch autograd function:

class ForwardSign(torch.autograd.Function):
    @staticmethod
    def forward(ctx, w):
        return math.sqrt(2. / (w.shape[1] * w.shape[2] * w.shape[3])) * w.sign()

    @staticmethod
    def backward(ctx, g):
        return g

On forward, we take sign of the weights and scale it by He-init constant. On backward, we propagate gradient without changes. WRN-20-10 trained with such parameterization is only slightly off from it's full precision variant, here is what I got myself with this code on CIFAR-100:

network accuracy (5 runs mean +- std) checkpoint (Mb)
WRN-20-10 80.5 +- 0.24 205 Mb
WRN-20-10-1bit 80.0 +- 0.26 3.5 Mb

Details

Here are the differences with WRN code https://github.com/szagoruyko/wide-residual-networks:

  • BatchNorm has no affine weight and bias parameters
  • First layer has 16 * width channels
  • Last fc layer is removed in favor of 1x1 conv + F.avg_pool2d
  • Downsample is done by F.avg_pool2d + torch.cat instead of strided conv
  • SGD with cosine annealing and warm restarts

I used PyTorch 0.4.1 and Python 3.6 to run the code.

Reproduce WRN-20-10 with 1-bit training on CIFAR-100:

python main.py --binarize --save ./logs/WRN-20-10-1bit_$RANDOM --width 10 --dataset CIFAR100

Convergence plot (train error in dash):

download

I've also put 3.5 Mb checkpoint with binary weights packed with np.packbits, and a very short script to evaluate it:

python evaluate_packed.py --checkpoint wrn20-10-1bit-packed.pth.tar --width 10 --dataset CIFAR100

S3 url to checkpoint: https://s3.amazonaws.com/modelzoo-networks/wrn20-10-1bit-packed.pth.tar

Owner
Sergey Zagoruyko
Sergey Zagoruyko
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022