KoCLIP: Korean port of OpenAI CLIP, in Flax

Overview

KoCLIP

Open in Streamlit Open In Colab

This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX community week co-organized with Google's Flax, JAX, and Cloud teams (announcement).

Demo

Check out our Streamlit app here. The demo illustrates three potential uses cases of KoCLIP on different downstream tasks:

  • Image to Text: This is essentially a zero-shot image classification task. Given an input image, the models finds the most likely caption among the text labels provided.
  • Text to Image: This is essentially an image retrieval task. Given a text, the model looks up a database of pre-computed image embeddings to retrieve the image that best matches given text.
  • Text to Patch: This is also a variant of zero-shot image classification. Given a text and an image, the image is partitioned into subsections, and the model ranks them based on their relevance with the text query.

Quickstart

To follow along the code snippets below, we recommend that you refer to the Colab notebook.

  1. Import dependencies and initialize a KoCLIP model along with its processor.
import requests
import jax
from PIL import Image

from koclip import load_koclip

model, processor = load_koclip("koclip-base")
  1. Prepare image and text captions.
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
text = ["소파 위에 고양이", "강아지와 강아지 주인", "쳇바퀴를 달리는 햄스터", "자동차"]
image
  1. Run inference.
inputs = processor(
    text=text,
    images=image, 
    return_tensors="jax", # could also be "pt" 
    padding=True
)

outputs = model(**inputs)
probs = jax.nn.softmax(outputs.logits_per_image, axis=1)

for idx, prob in sorted(enumerate(*probs), key=lambda x: x[1], reverse=True):
    print(text[idx], prob)

Models

We trained a total of two models, koclip-base and koclip-large. Both models use RoBERTa-large. The decision to use a somewhat large language model was motivated by the intuition that annotated Korean datasets are rare; a well-trained, performant LM would be key to good multimodal pipeline given limited data.

KoCLIP LM ViT
koclip-base klue/roberta-large openai/clip-vit-base-patch32
koclip-large klue/roberta-large google/vit-large-patch16-224

Training

KoCLIP was fine-tuned using 82,783 images from the MSCOCO 2014 image captioning dataset. Korean translations of image captions were obtained from AI Hub, an open database maintained by subsidiaries of the Korean Ministry of Science and ICT. Validation metrics were monitored using approximately 40,000 images from the validation set of the aforementioned dataset.

KoCLIP was trained on a TPU3-v8 VM. Both text and image encoder backbones were loaded from their pretrained checkpoints. KoCLIP was trained to maximize the similarity score between matching pairs of images and captions.

Findings

In this section, we detail some interesting findings we made throughout the project.

Prompting

We found that KoCLIP performs better when prompting is used to induce zero-shot behavior. Namely, instead of feeding it a single word or short phrase, casting a template such as

이것은 {{}} 이다.

noticably helped the model produce more reliable results. We hypothesize that this is due to the nature of captions in the MSCOCO datset, which are most often full sentences, albeit sometimes short in length.

Multilinguality

Although KoCLIP was trained exclusively on a Korean dataset, we found that English queries also work surprisingly well for simple words (e.g. "dog", "car"). This could be one of two reasons, or a combination thereof:

  • ViT Pretraining: The ViT backbone for koclip-base, openai/clip-vit-base-patch32, was already pretrained on an English dataset. Hence, it is possible that its embeddings still lie in a latent space where vector arithematic can be performed with English text embeddings. One reason against this hypothesis is that koclip-large also demonstrates similar multilingual behavior.

  • LM Knowledge Bleed: klue/roberta-large was trained on a large corpus of Korean text in a self-supervised fashion. One might reasonably suspect that English words were included in parts of the corpus, especially given the high frequency of English word transliterations in contemporary conversational Korean. This might also explain why English queries work for both koclip-base and koclip-large. One reason against this hypothesis is that the authors of KLUE explicitly state in their paper that one criterion for text selection was that "the corpus must be written in contemporary Korean."

At the end of the day, we still found it intriguing that a model that was fine-tuned exclusively on Korean managed to produce semantic embeddings from English queries that work well with ViT.

Team

Acknowledgement

The FlaxHybridCLIP model was adpated from the Hugging Face transformer repository, under jax-projects. We also express gratitude to the teams at Google for generously offering TPU VMs for this project. Last but not least, we thank the KLUE team for making pretrained Korean RoBERTa-large weights publicly available.

References

@misc{park2021klue,
      title={KLUE: Korean Language Understanding Evaluation}, 
      author={Sungjoon Park and Jihyung Moon and Sungdong Kim and Won Ik Cho and Jiyoon Han and Jangwon Park and Chisung Song and Junseong Kim and Yongsook Song and Taehwan Oh and Joohong Lee and Juhyun Oh and Sungwon Lyu and Younghoon Jeong and Inkwon Lee and Sangwoo Seo and Dongjun Lee and Hyunwoo Kim and Myeonghwa Lee and Seongbo Jang and Seungwon Do and Sunkyoung Kim and Kyungtae Lim and Jongwon Lee and Kyumin Park and Jamin Shin and Seonghyun Kim and Lucy Park and Alice Oh and Jung-Woo Ha and Kyunghyun Cho},
      year={2021},
      eprint={2105.09680},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{radford2021learning,
      title={Learning Transferable Visual Models From Natural Language Supervision}, 
      author={Alec Radford and Jong Wook Kim and Chris Hallacy and Aditya Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
      year={2021},
      eprint={2103.00020},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@misc{lin2015microsoft,
      title={Microsoft COCO: Common Objects in Context}, 
      author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
      year={2015},
      eprint={1405.0312},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@misc{srinivasan2021wit,
      title={WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning}, 
      author={Krishna Srinivasan and Karthik Raman and Jiecao Chen and Michael Bendersky and Marc Najork},
      year={2021},
      eprint={2103.01913},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Jake Tae
CS + Math @ Yale, SWE intern @huggingface
Jake Tae
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception, IROS 2021

For academic use only. Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception Ziwei Wang, Liyuan Pan, Yonhon Ng, Zheyu Zhuang and Robert Mahony Th

Ziwei Wang 11 Jan 04, 2023
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
The Face Mask recognition system uses AI technology to detect the person with or without a mask.

Face Mask Detection Face Mask Detection system built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Rohan Kasabe 4 Apr 05, 2022
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022