Texture mapping with variational auto-encoders

Overview

vae-textures

This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using JAX and Flax, and I found them both quite intuitive and easy to use.

To get straight to the results, check out the Results section. The Background section describes the goals of this project in a bit more detail.

Background

In geometry processing, mesh parameterization allows high-resolution details of a 3D object, such as color and material variations, to be stored in a highly-optimized 2D image format. The strategy is to map each vertex of the 3D model's mesh to a unique 2D location in the plane, with the constraint that nearby points in 3D are also nearby in 2D. In general, we want this mapping to distort the geometry of the surface as little as possible, so for example large features on the 3D surface get a lot of pixels in the 2D image.

This might ring a bell to those familiar with machine learning. In ML, mapping a higher-dimensional space to a lower-dimensional space is called "embedding" and is often performed to aid in visualization or to remove extraneous information. VAEs are one technique in ML for mapping a high-dimensional space to a well-behaved latent space, and have the desirable property that probability densities are (approximately) preserved between the two spaces.

Given the above observations, here is how we can use VAEs for mesh parameterization:

  1. For a given 3D model, create a "surface dataset" with random points on the surface and their respective normals.
  2. Train a VAE to generate points on the surface using a 2D Gaussian latent space.
  3. Use the gaussian CDF to convert the above latents to the uniform distribution, so that "probability preservation" becomes "area preservation".
  4. Apply the 3D -> 2D mapping from the VAE encoder + gaussian CDF to map the vertices of the original mesh to the unit square.
  5. Render the resulting model with some test 2D texture image acting as the unit square.

The above process sounds pretty solid, but there are some quirks to getting it to work. Coming into this project, I predicted two possible reasons it would fail. It turns out that number 2 isn't that big of an issue (an extra orthogonality loss helps a lot), and there was a third issue I didn't think of (described in the Results section).

  1. Some triangles will be messed up because of cuts/seams. In particular, the VAE will have to "cut up" the surface to place it into the latent space, and we won't know exactly where these cuts are when mapping texture coordinates to triangle vertices. As a result, a few triangles must have points which are very far away in latent space.
  2. It will be difficult to force the mapping to be conformal. The VAE objective will mostly attempt to preserve areas (i.e. density), and ideally we care about conformality as well.

Results

This was my first time using JAX. Nevertheless, I was able to get interesting results right out of the gate. I ran most of my experiments on a torus 3D model, but I have since verified that it works for more complex models as well.

Initially, I trained VAEs with a Gaussian decoder loss. I also played around with an orthogonality bonus based on the eigenvalues of the Jacobian of the encoder. This resulted in texture mappings like this one:

Torus with orthogonality bonus and Gaussian loss

The above picture looks like a clean mapping, but it isn't actually bijective. To see why, let's sample from this VAE. If everything works as expected, we should get points on the surface of the torus. For this "sampling", I'll use the mean prediction from the decoder (even though its output is a Gaussian distribution) since we really just want a deterministic mapping:

A flat disk with a hole in the middle

It might be hard to tell from a single rendering, but this is just a flat disk with a low-density hole in the middle. In particular, the VAE isn't encoding the z axis at all, but rather just the x and y axes. The resulting texture map looks smooth, but every point in the texture is reused on each side of the torus, so the mapping is not bijective.

I discovered that this caused by the Gaussian likelihood loss on the decoder. It is possible for the model to reduce this loss arbitrarily by shrinking the standard deviations of the x and y axes, so there is little incentive to actually capture every axis accurately.

To achieve better results, we can drop the Gaussian likelihood loss and instead use pure MSE for the decoder. This isn't very well-principled, and we now have to select a reasonable coefficient for the KL term of the VAE to balance the reconstruction accuracy with the quality of the latent distribution. I found good hyperparameters for the torus, but these will likely require tuning for other models.

With the better reconstruction loss function, sampling the VAE gives the expected point cloud:

The surface of a torus, point cloud

The mappings we get don't necessarily seem angle-preserving, though:

A tiled grid mapped onto a torus

To preserve angles, we can add an orthogonality bonus to the loss. When we try to make the map preserve angles, we might make it less area preserving, as can be seen here:

A tiled grid mapped onto a torus which attempts to preserve angles

Also note from the last two images that there are seams along which the texture looks totally messed up. This is because the surface cannot be flattened to a plane without some cuts, along which the VAE encoder has to "jump" from one point on the 2D plane to another. This was one of my predicted shortcomings of the method.

Running

First, install the package with

pip install -e .

Training

My initial VAE experiments were run like so, via scripts/train_vae.py:

python scripts/train_vae.py --ortho-coeff 0.002 --num-iters 20000 models/torus.stl

This will save a model checkpoint to vae.pkl after 20000 iterations, which only takes a minute or two on a laptop CPU.

The above will train a VAE with Gaussian reconstruction loss, which may not learn a good bijective map (as shown above). To instead use the MSE decoder loss, try:

python scripts/train_vae.py --recon-loss-fn mse --kl-coeff 0.001 --batch-size 1024 --num-iters 20000 models/torus.stl

I also found a better orthogonality loss function. To get reasonable mappings that attempt to preserve angles, add --ortho-coeff 0.01 --ortho-loss-fn rel.

Using the VAE

Once you have trained a VAE, you can export a 3D model with the resulting texture mapping like so:

python scripts/map_vae.py models/torus.stl outputs/mapped_output.obj

Note that the resulting .obj file references a material.mtl file which should be in the same directory. I already include such a file with a checkerboard texture in outputs/material.mtl.

You can also sample a point cloud from the VAE using point_cloud_gen.py:

python scripts/point_cloud_gen.py outputs/point_cloud.obj

Finally, you can produce a texture image such that the pixel at point (x, y) is an RGB-encoded, normalized (x, y, z) coordinate from decoder(x, y).

python scripts/inv_map_vae.py models/torus.stl outputs/rgb_texture.png
Owner
Alex Nichol
Web developer, math geek, and AI enthusiast.
Alex Nichol
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Joint Discriminative and Generative Learning for Person Re-identification [Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp] Joint Discriminative

NVIDIA Research Projects 1.2k Dec 30, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI)

Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI) Preparation Clone the Synchronized-BatchNorm-P

Fangneng Zhan 12 Aug 10, 2022