This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

Overview

GreaseLM: Graph REASoning Enhanced Language Models

This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models".

Usage

1. Dependencies

Run the following commands to create a conda environment (assuming CUDA 10.1):

conda create -y -n greaselm python=3.8
conda activate greaselm
pip install numpy==1.18.3 tqdm
pip install torch==1.8.0+cu101 torchvision -f https://download.pytorch.org/whl/torch_stable.html
pip install transformers==3.4.0 nltk spacy
pip install wandb
conda install -y -c conda-forge tensorboardx
conda install -y -c conda-forge tensorboard

# for torch-geometric
pip install torch-scatter==2.0.7 -f https://pytorch-geometric.com/whl/torch-1.8.0+cu101.html
pip install torch-cluster==1.5.9 -f https://pytorch-geometric.com/whl/torch-1.8.0+cu101.html
pip install torch-sparse==0.6.9 -f https://pytorch-geometric.com/whl/torch-1.8.0+cu101.html
pip install torch-spline-conv==1.2.1 -f https://pytorch-geometric.com/whl/torch-1.8.0+cu101.html
pip install torch-geometric==1.7.0 -f https://pytorch-geometric.com/whl/torch-1.8.0+cu101.html

2. Download data

Download all the raw data -- ConceptNet, CommonsenseQA, OpenBookQA -- by

./download_raw_data.sh

You can preprocess the raw data by running

CUDA_VISIBLE_DEVICES=0 python preprocess.py -p 
   

   

You can specify the GPU you want to use in the beginning of the command CUDA_VISIBLE_DEVICES=.... The script will:

  • Setup ConceptNet (e.g., extract English relations from ConceptNet, merge the original 42 relation types into 17 types)
  • Convert the QA datasets into .jsonl files (e.g., stored in data/csqa/statement/)
  • Identify all mentioned concepts in the questions and answers
  • Extract subgraphs for each q-a pair

TL;DR. The preprocessing may take long; for your convenience, you can download all the processed data here into the top-level directory of this repo and run

unzip data_preprocessed.zip

Add MedQA-USMLE. Besides the commonsense QA datasets (CommonsenseQA, OpenBookQA) with the ConceptNet knowledge graph, we added a biomedical QA dataset (MedQA-USMLE) with a biomedical knowledge graph based on Disease Database and DrugBank. You can download all the data for this from [here]. Unzip it and put the medqa_usmle and ddb folders inside the data/ directory.

The resulting file structure should look like this:

.
├── README.md
└── data/
    ├── cpnet/                 (preprocessed ConceptNet)
    └── csqa/
        ├── train_rand_split.jsonl
        ├── dev_rand_split.jsonl
        ├── test_rand_split_no_answers.jsonl
        ├── statement/             (converted statements)
        ├── grounded/              (grounded entities)
        ├── graphs/                (extracted subgraphs)
        ├── ...

3. Training GreaseLM

To train GreaseLM on CommonsenseQA, run

CUDA_VISIBLE_DEVICES=0 ./run_greaselm.sh csqa --data_dir data/

You can specify up to 2 GPUs you want to use in the beginning of the command CUDA_VISIBLE_DEVICES=....

Similarly, to train GreaseLM on OpenbookQA, run

CUDA_VISIBLE_DEVICES=0 ./run_greaselm.sh obqa --data_dir data/

To train GreaseLM on MedQA-USMLE, run

CUDA_VISIBLE_DEVICES=0 ./run_greaselm__medqa_usmle.sh

4. Pretrained model checkpoints

You can download a pretrained GreaseLM model on CommonsenseQA here, which achieves an IH-dev acc. of 79.0 and an IH-test acc. of 74.0.

You can also download a pretrained GreaseLM model on OpenbookQA here, which achieves an test acc. of 84.8.

You can also download a pretrained GreaseLM model on MedQA-USMLE here, which achieves an test acc. of 38.5.

5. Evaluating a pretrained model checkpoint

To evaluate a pretrained GreaseLM model checkpoint on CommonsenseQA, run

CUDA_VISIBLE_DEVICES=0 ./eval_greaselm.sh csqa --data_dir data/ --load_model_path /path/to/checkpoint

Again you can specify up to 2 GPUs you want to use in the beginning of the command CUDA_VISIBLE_DEVICES=....

SimilarlyTo evaluate a pretrained GreaseLM model checkpoint on OpenbookQA, run

CUDA_VISIBLE_DEVICES=0 ./eval_greaselm.sh obqa --data_dir data/ --load_model_path /path/to/checkpoint

6. Use your own dataset

  • Convert your dataset to {train,dev,test}.statement.jsonl in .jsonl format (see data/csqa/statement/train.statement.jsonl)
  • Create a directory in data/{yourdataset}/ to store the .jsonl files
  • Modify preprocess.py and perform subgraph extraction for your data
  • Modify utils/parser_utils.py to support your own dataset

Acknowledgment

This repo is built upon the following work:

QA-GNN: Question Answering using Language Models and Knowledge Graphs
https://github.com/michiyasunaga/qagnn

Many thanks to the authors and developers!

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023