Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Overview

Taxonomizing local versus global structure in neural network loss landscapes

Introduction

This repository includes the programs to reproduce the results of the paper Taxonomizing local versus global structure in neural network loss landscapes. The code has been tested on Python 3.8.12 with PyTorch 1.10.1 and CUDA 10.2.

Block (Caricature of different types of loss landscapes). Globally well-connected versus globally poorly-connected loss landscapes; and locally sharp versus locally flat loss landscapes. Globally well-connected loss landscapes can be interpreted in terms of a global “rugged convexity”; and globally well-connected and locally flat loss landscapes can be further divided into two sub-cases, based on the similarity of trained models.

Block (2D phase plot). Partitioning the 2D load-like—temperature-like diagram into different phases of learning, varying batch size to change temperature and varying model width to change load. Models are trained with ResNet18 on CIFAR-10. All plots are on the same set of axes.

Usage

First, follow the steps below to install the necessary packages.

conda create -n loss_landscape python=3.8
source activate loss_landscape
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Training

Then, use the following command to generate the training scripts.

cd workspace/src
python example_experiment.py --metrics train

The training script can be found in the folder bash_scripts/width_lr_decay.

We recommend using some job scheduler to execute the training script. For example, use the following to generate an example slurm script for training.

python example_experiment.py --metrics train --generate-slurm-scripts

Evaluating metrics and generating phase plots

Use the following command to generate the scripts for different generalization metrics.

python example_experiment.py --metrics curve CKA hessian dist loss_acc

You can use our prior results, which are compressed and stored in workspace/checkpoint/results.tar.gz. Please decompress them using the command below.

cd workspace/checkpoint/
tar -xzvf results.tar.gz

After the generalization metrics are obtained, use the jupyter notebook Load_temperature_plots.ipynb in workspace/src/visualization/ to visualize the results.

Citation

We appreciate it if you would please cite the following paper if you found the repository useful for your work:

@inproceedings{yang2021taxonomizing,
  title={Taxonomizing local versus global structure in neural network loss landscapes},
  author={Yang, Yaoqing and Hodgkinson, Liam and Theisen, Ryan and Zou, Joe and Gonzalez, Joseph E and Ramchandran, Kannan and Mahoney, Michael W},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

License

MIT

Owner
Yaoqing Yang
Yaoqing Yang
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
TabNet for fastai

TabNet for fastai This is an adaptation of TabNet (Attention-based network for tabular data) for fastai (=2.0) library. The original paper https://ar

Mikhail Grankin 116 Oct 21, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
Just Go with the Flow: Self-Supervised Scene Flow Estimation

Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,

Himangi Mittal 50 Nov 22, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023