An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

Overview

CPC_audio

This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers well Across Languages. This is an unsupervised method to train audio features directly from the raw waveform.

Moreover, this code also implements all the evaluation metrics used in the paper:

Setup instructions

The installation is a tiny bit involved due to the torch-audio dependency.

0/ Clone the repo: git clone [email protected]:facebookresearch/CPC_audio.git && cd CPC_audio

1/ Install libraries which would be required for torch-audio https://github.com/pytorch/audio :

  • MacOS: brew install sox
  • Linux: sudo apt-get install sox libsox-dev libsox-fmt-all

2/ conda env create -f environment.yml && conda activate cpc37

3/ Run setup.py python setup.py develop

You can test your installation with: nosetests -d

CUDA driver

This setup is given for CUDA 9.2 if you use a different version of CUDA then please change the version of cudatoolkit in environment.yml. For more information on the cudatoolkit version to use, please check https://pytorch.org/

Standard datasets

We suggest to train the model either on Librispeech or libri-light.

How to run a session

To run a new training session, use:

python cpc/train.py --pathDB $PATH_AUDIO_FILES --pathCheckpoint $PATH_CHECKPOINT_DIR --pathTrain $TRAINING_SET --pathVal $VAL_SET --file_extension $EXTENSION

Where:

  • $PATH_AUDIO_FILES is the directory containing the audio files. The files should be arranged as below:
PATH_AUDIO_FILES  
│
└───speaker1
│   └───...
│         │   seq_11.{$EXTENSION}
│         │   seq_12.{$EXTENSION}
│         │   ...
│   
└───speaker2
    └───...
          │   seq_21.{$EXTENSION}
          │   seq_22.{$EXTENSION}

Please note that each speaker directory can contain an arbitrary number of subdirectories: the speaker label will always be retrieved from the top one. The name of the files isn't relevant. For a concrete example, you can look at the organization of the Librispeech dataset.

  • $PATH_CHECKPOINT_DIR in the directory where the checkpoints will be saved
  • $TRAINING_SET is a path to a .txt file containing the list of the training sequences (see here for example)
  • $VALIDATION_SET is a path to a .txt file containing the list of the validation sequences
  • $EXTENSION is the extension of each audio file

Custom architectures

The code allows you to train a wide range of architectures. For example, to train the CPC method as described in Van Den Oord's paper just run:

python cpc/train.py --pathDB $PATH_AUDIO_FILES --pathCheckpoint $PATH_CHECKPOINT_DIR --pathTrain $TRAINING_SET --pathVal $VAL_SET --file_extension $EXTENSION --normMode batchNorm --rnnMode linear

Or if you want to train a model with a FFD prediction network instead of a transformer:

python cpc/train.py --pathDB $PATH_AUDIO_FILES --pathCheckpoint $PATH_CHECKPOINT_DIR --pathTrain $TRAINING_SET --pathVal $VAL_SET --file_extension $EXTENSION --rnnMode ffd --schedulerRamp 10

The --schedulerRamp option add a learning rate ramp at the beginning of the training: it barely affects the performance of a model with a transformer predictor but is necessary with other models.

Launch cpc/train.py -h to see all the possible options.

How to restart a session

To restart a session from the last saved checkpoint just run

python cpc/train.py --pathCheckpoint $PATH_CHECKPOINT_DIR

How to run an evaluation session

All evaluation scripts can be found in cpc/eval/.

Linear separability:

After training, the CPC model can output high level features for a variety of tasks. For an input audio file sampled at 16kHz, the provided baseline model will output 256 dimensional output features every 10ms. We provide two linear separability tests one for speaker, one for phonemes, in which a linear classifier is trained on top of the CPC features with aligned labels, and evaluated on a held-out test set.

Train / Val splits as well as phone alignments for librispeech-100h can be found here.

Speaker separability:

python cpc/eval/linear_separability.py $PATH_DB $TRAINING_SET $VAL_SET $CHECKPOINT_TO_LOAD --pathCheckpoint $PATH_CHECKPOINT

Phone separability:

python cpc/eval/linear_separability.py $PATH_DB $TRAINING_SET $VAL_SET $CHECKPOINT_TO_LOAD --pathCheckpoint $PATH_CHECKPOINT --pathPhone $PATH_TO_PHONE_LABELS

You can also concatenate the output features of several model by providing several checkpoint to the --load option. For example the following command line:

python cpc/eval/linear_separability.py -$PATH_DB $TRAINING_SET $VAL_SET model1.pt model2.pt --pathCheckpoint $PATH_CHECKPOINT

Will evaluate the speaker separability of the concatenation of the features from model1 and model2.

ABX score:

You can run the ABX score on the Zerospeech2017 dataset. To begin, download the dataset here. Then run the ABX evaluation on a given checkpoint with:

python ABX.py from_checkpoint $PATH_CHECKPOINT $PATH_ITEM_FILE $DATASET_PATH --seq_norm --strict --file_extension .wav --out $PATH_OUT

Where:

  • $PATH_CHECKPOINT is the path pointing to the checkpoint to evaluate
  • $PATH_ITEM_FILE is the path to the .item file containing the triplet annotations
  • $DATASET_PATH path to the directory containing the audio files
  • $PATH_OUT path to the directory into which the results should be dumped
  • --seq_norm normalize each batch of features across the time channel before computing ABX
  • --strict forces each batch of features to contain exactly the same number of frames.

Cross lingual transfer

To begin download the common voices datasets here, you will also need to download our phonem annotations and our train / val / test splits for each language here. Then unzip your data at PATH_COMMON_VOICES. Unfortunately, the audio files in common voices don't have the same sampling rate as in Librispeech. Thus you'll need to convert them into 16kH audio using the command:

DIR_CC=$PATH_COMMON_VOICES
for x in fr zh it ru nl sv es tr tt ky; do python cpc/eval/utils/adjust_sample_rate.py ${DIR_CC}/${x}/clips ${DIR_CC}/${x}/validated_phones_reduced.txt ${DIR_CC}/${x}/clips_16k; done

You can now run the experiments described in the paper. To begin, you must train the linear classifier. You will find below the instructions for the Spanish dataset: you can run the experiments on any other dataset in the same fashion.

Frozen features

To run the training on frozen features with the one hour dataset, just run:

python cpc/eval/common_voices_eval.py train $PATH_COMMON_VOICES/es/clips_16k $PATH_COMMON_VOICES/es/validated_phones_reduced.txt $CHECKPOINT_TO_TEST --pathTrain $PATH_COMMON_VOICES/es/trainSeqs_1.0_uniform_new_version.txt  --pathVal $PATH_COMMON_VOICES/es/trainSeqs_1.0_uniform_new_version.txt --freeze -o $OUTPUT_DIR

Fine tuning

The command is quite similar to run the fine-tuning experiments on the 5 hours dataset. For example in French you need to run:

python cpc/eval/common_voices_eval.py train $PATH_COMMON_VOICES/es/clips_16k $PATH_COMMON_VOICES/es/validated_phones_reduced.txt $CHECKPOINT_TO_TEST --pathTrain $PATH_COMMON_VOICES/es/trainSeqs_5.0_uniform_new_version.txt --pathVal $PATH_COMMON_VOICES/es/trainSeqs_5.0_uniform_new_version.txt --freeze -o $OUTPUT_DIR

PER

Once the training is done, you can compute the associated phone error rate (PER) on the test subset. To do so, just run:

python cpc/eval/common_voices_eval.py per $OUTPUT_DIR --pathVal $PATH_COMMON_VOICES/es/testSeqs_uniform_new_version.txt --pathPhone $PATH_COMMON_VOICES/es/validated_phones_reduced.txt

torch hub

To begin download the common voices datasets here, you will also need to download our phonem annotations and our train / val / test splits for each language here. Then unzip your data at PATH_COMMON_VOICES. Unfortunately, the audio files in common voices don't have the same sampling rate as in Librispeech. Thus you'll need to convert them into 16kH audio using the command:

DIR_CC=$PATH_COMMON_VOICES
for x in fr zh it ru nl sv es tr tt ky; do python cpc/eval/utils/adjust_sample_rate.py ${DIR_CC}/${x}/clips ${DIR_CC}/${x}/validated_phones_reduced.txt ${DIR_CC}/${x}/clips_16k; done

You can now run the experiments described in the paper. To begin, you must train the linear classifier. You will find below the instructions for the Spanish dataset: you can run the experiments on any other dataset in the same fashion.

Frozen features

To run the training on frozen features with the one hour dataset, just run:

python cpc/eval/common_voices_eval.py train $PATH_COMMON_VOICES/es/clips_16k $PATH_COMMON_VOICES/es/validated_phones_reduced.txt $CHECKPOINT_TO_TEST --pathTrain $PATH_COMMON_VOICES/es/trainSeqs_1.0_uniform_new_version.txt  --pathVal $PATH_COMMON_VOICES/es/trainSeqs_1.0_uniform_new_version.txt --freeze -o $OUTPUT_DIR

Fine tuning

The command is quite similar to run the fine-tuning experiments on the 5 hours dataset. For example in French you need to run:

python cpc/eval/common_voices_eval.py train $PATH_COMMON_VOICES/es/clips_16k $PATH_COMMON_VOICES/es/validated_phones_reduced.txt $CHECKPOINT_TO_TEST --pathTrain $PATH_COMMON_VOICES/es/trainSeqs_5.0_uniform_new_version.txt --pathVal $PATH_COMMON_VOICES/es/trainSeqs_5.0_uniform_new_version.txt --freeze -o $OUTPUT_DIR

PER

Once the training is done, you can compute the associated phone error rate (PER) on the test subset. To do so, just run:

python cpc/eval/common_voices_eval.py per $OUTPUT_DIR --pathVal $PATH_COMMON_VOICES/es/testSeqs_uniform_new_version.txt --pathPhone $PATH_COMMON_VOICES/es/validated_phones_reduced.txt

torch hub

This model is also available via torch.hub. For more details, have a look at hubconf.py.

Citations

Please consider citing this project in your publications if it helps your research.

@misc{rivire2020unsupervised,
    title={Unsupervised pretraining transfers well across languages},
    author={Morgane Rivière and Armand Joulin and Pierre-Emmanuel Mazaré and Emmanuel Dupoux},
    year={2020},
    eprint={2002.02848},
    archivePrefix={arXiv},
    primaryClass={eess.AS}
}

License

CPC_audio is MIT licensed, as found in the LICENSE file.

Owner
Meta Research
Meta Research
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels

Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le

Sungmin Hong 6 Jul 18, 2022
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022