Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Overview

Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting (official Pytorch implementation)

zero-shot This paper submitted to TIP is the extension of the previous Arxiv paper.

This project aims to

  1. provide a baseline of pedestrian attribute recognition.
  2. provide two new datasets RAPzs and PETAzs following zero-shot pedestrian identity setting.
  3. provide a general training pipeline for pedestrian attribute recognition and multi-label classification task.

This project provide

  1. DDP training, which is mainly used for multi-label classifition.
  2. Training on all attributes, testing on "selected" attribute. Because the proportion of positive samples for other attributes is less than a threshold, such as 0.01.
    1. For PETA and PETAzs, 35 of the 105 attributes are selected for performance evaluation.
    2. For RAPv1, 51 of the 92 attributes are selected for performance evaluation.
    3. For RAPv2 and RAPzs, 54 and 53 of the 152 attributes are selected for performance evaluation.
    4. For PA100k, all attributes are selected for performance evaluation.
    • However, training on all attributes can not bring consistent performance improvement on various datasets.
  3. EMA model.
  4. Transformer-base model, such as swin-transformer (with a huge performance improvement) and vit.
  5. Convenient dataset info file like dataset_all.pkl

Dataset Info

  • PETA: Pedestrian Attribute Recognition At Far Distance [Paper][Project]

  • PA100K[Paper][Github]

  • RAP : A Richly Annotated Dataset for Pedestrian Attribute Recognition

  • PETAzs & RAPzs : Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting Paper [Project]

Performance

Pedestrian Attribute Recognition

Datasets Models ma Acc Prec Rec F1
PA100k resnet50 80.21 79.15 87.79 87.01 87.40
-- resnet50* 79.85 79.13 89.45 85.40 87.38
-- resnet50 + EMA 81.97 80.20 88.06 88.17 88.11
-- bninception 79.13 78.19 87.42 86.21 86.81
-- TresnetM 74.46 68.72 79.82 80.71 80.26
-- swin_s 82.19 80.35 87.85 88.51 88.18
-- vit_s 79.40 77.61 86.41 86.22 86.32
-- vit_b 81.01 79.38 87.60 87.49 87.55
PETA resnet50 83.96 78.65 87.08 85.62 86.35
PETAzs resnet50 71.43 58.69 74.41 69.82 72.04
RAPv1 resnet50 79.27 67.98 80.19 79.71 79.95
RAPv2 resnet50 78.52 66.09 77.20 80.23 78.68
RAPzs resnet50 71.76 64.83 78.75 76.60 77.66
  • The resnet* model is trained by using the weighted function proposed by Tan in AAAI2020.
  • Performance in PETAzs and RAPzs based on the first version of PETAzs and RAPzs as described in paper.
  • Experiments are conducted on the input size of (256, 192), so there may be minor differences from the results in the paper.
  • The reported performance can be achieved at the first drop of learning rate. We also take this model as the best model.
  • Pretrained models are provided now at Google Drive.

Multi-label Classification

Datasets Models mAP CP CR CF1 OP OR OF1
COCO resnet101 82.75 84.17 72.07 77.65 85.16 75.47 80.02

Pretrained Models

Dependencies

  • python 3.7
  • pytorch 1.7.0
  • torchvision 0.8.2
  • cuda 10.1

Get Started

  1. Run git clone https://github.com/valencebond/Rethinking_of_PAR.git
  2. Create a directory to dowload above datasets.
    cd Rethinking_of_PAR
    mkdir data
    
  3. Prepare datasets to have following structure:
    ${project_dir}/data
        PETA
            images/
            PETA.mat
            dataset_all.pkl
            dataset_zs_run0.pkl
        PA100k
            data/
            dataset_all.pkl
        RAP
            RAP_dataset/
            RAP_annotation/
            dataset_all.pkl
        RAP2
            RAP_dataset/
            RAP_annotation/
            dataset_zs_run0.pkl
        COCO14
            train2014/
            val2014/
            ml_anno/
                category.json
                coco14_train_anno.pkl
                coco14_val_anno.pkl
    
  4. Train baseline based on resnet50
    sh train.sh
    

Acknowledgements

Codes are based on the repository from Dangwei Li and Houjing Huang. Thanks for their released code.

Citation

If you use this method or this code in your research, please cite as:

@article{jia2021rethinking,
  title={Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting},
  author={Jia, Jian and Huang, Houjing and Chen, Xiaotang and Huang, Kaiqi},
  journal={arXiv preprint arXiv:2107.03576},
  year={2021}
}
Owner
Jian
computer vision
Jian
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022