Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Overview

Cross-modal Retrieval using Transformer Encoder Reasoning Networks

This project reimplements the idea from "Transformer Reasoning Network for Image-Text Matching and Retrieval". To solve the task of cross-modal retrieval, representative features from both modal are extracted using distinctive pipeline and then projected into the same embedding space. Because the features are sequence of vectors, Transformer-based model can be utilised to work best. In this repo, my highlight contribution is:

  • Reimplement TERN module, which exploits the effectiveness of using Transformer on bottom-up attention features and bert features.
  • Take advantage of facebookresearch's FAISS for efficient similarity search and clustering of dense vectors.
  • Experiment various metric learning loss objectives from KevinMusgrave's Pytorch Metric Learning

The figure below shows the overview of the architecture

screen

Datasets

  • I trained TERN on Flickr30k dataset which contains 31,000 images collected from Flickr, together with 5 reference sentences provided by human annotators for each image. For each sample, visual and text features are pre-extracted as numpy files

  • Some samples from the dataset:

Images Captions
screen 1. An elderly man is setting the table in front of an open door that leads outside to a garden.
2. The guy in the black sweater is looking onto the table below.
3. A man in a black jacket picking something up from a table.
4. An old man wearing a black jacket is looking on the table.
5. The gray-haired man is wearing a sweater.
screen 1. Two men are working on a bicycle on the side of the road.
2. Three men working on a bicycle on a cobblestone street.
3. Two men wearing shorts are working on a blue bike.
4. Three men inspecting a bicycle on a street.
5. Three men examining a bicycle.

Execution

  • Installation
pip install -r requirements.txt
apt install libomp-dev
pip install faiss-gpu
  • Specify dataset paths and configuration in the config file

  • For training

PYTHONPATH=. python tools/train.py 
  • For evaluation
PYTHONPATH=. python tools/eval.py \
                --top_k= <top k similarity> \
                --weight= <model checkpoint> \

Notebooks

  • Notebook Inference TERN on Flickr30k dataset
  • Notebook Use FasterRCNN to extract Bottom Up embeddings
  • Notebook Use BERT to extract text embeddings

Results

  • Validation m on Flickr30k dataset (trained for 100 epochs):
Model Weights i2t/[email protected] t2i/[email protected]
TERN link 0.5174 0.7496
  • Some visualization
Query text: Two dogs are running along the street
screen
Query text: The woman is holding a violin
screen
Query text: Young boys are playing baseball
screen
Query text: A man is standing, looking at a lake
screen

Paper References

@misc{messina2021transformer,
      title={Transformer Reasoning Network for Image-Text Matching and Retrieval}, 
      author={Nicola Messina and Fabrizio Falchi and Andrea Esuli and Giuseppe Amato},
      year={2021},
      eprint={2004.09144},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@misc{anderson2018bottomup,
      title={Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering}, 
      author={Peter Anderson and Xiaodong He and Chris Buehler and Damien Teney and Mark Johnson and Stephen Gould and Lei Zhang},
      year={2018},
      eprint={1707.07998},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@article{JDH17,
  title={Billion-scale similarity search with GPUs},
  author={Johnson, Jeff and Douze, Matthijs and J{\'e}gou, Herv{\'e}},
  journal={arXiv preprint arXiv:1702.08734},
  year={2017}
}

Code References

Owner
Minh-Khoi Pham
Passionate Machine Learner
Minh-Khoi Pham
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022