Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Overview

Cross-modal Retrieval using Transformer Encoder Reasoning Networks

This project reimplements the idea from "Transformer Reasoning Network for Image-Text Matching and Retrieval". To solve the task of cross-modal retrieval, representative features from both modal are extracted using distinctive pipeline and then projected into the same embedding space. Because the features are sequence of vectors, Transformer-based model can be utilised to work best. In this repo, my highlight contribution is:

  • Reimplement TERN module, which exploits the effectiveness of using Transformer on bottom-up attention features and bert features.
  • Take advantage of facebookresearch's FAISS for efficient similarity search and clustering of dense vectors.
  • Experiment various metric learning loss objectives from KevinMusgrave's Pytorch Metric Learning

The figure below shows the overview of the architecture

screen

Datasets

  • I trained TERN on Flickr30k dataset which contains 31,000 images collected from Flickr, together with 5 reference sentences provided by human annotators for each image. For each sample, visual and text features are pre-extracted as numpy files

  • Some samples from the dataset:

Images Captions
screen 1. An elderly man is setting the table in front of an open door that leads outside to a garden.
2. The guy in the black sweater is looking onto the table below.
3. A man in a black jacket picking something up from a table.
4. An old man wearing a black jacket is looking on the table.
5. The gray-haired man is wearing a sweater.
screen 1. Two men are working on a bicycle on the side of the road.
2. Three men working on a bicycle on a cobblestone street.
3. Two men wearing shorts are working on a blue bike.
4. Three men inspecting a bicycle on a street.
5. Three men examining a bicycle.

Execution

  • Installation
pip install -r requirements.txt
apt install libomp-dev
pip install faiss-gpu
  • Specify dataset paths and configuration in the config file

  • For training

PYTHONPATH=. python tools/train.py 
  • For evaluation
PYTHONPATH=. python tools/eval.py \
                --top_k= <top k similarity> \
                --weight= <model checkpoint> \

Notebooks

  • Notebook Inference TERN on Flickr30k dataset
  • Notebook Use FasterRCNN to extract Bottom Up embeddings
  • Notebook Use BERT to extract text embeddings

Results

  • Validation m on Flickr30k dataset (trained for 100 epochs):
Model Weights i2t/[email protected] t2i/[email protected]
TERN link 0.5174 0.7496
  • Some visualization
Query text: Two dogs are running along the street
screen
Query text: The woman is holding a violin
screen
Query text: Young boys are playing baseball
screen
Query text: A man is standing, looking at a lake
screen

Paper References

@misc{messina2021transformer,
      title={Transformer Reasoning Network for Image-Text Matching and Retrieval}, 
      author={Nicola Messina and Fabrizio Falchi and Andrea Esuli and Giuseppe Amato},
      year={2021},
      eprint={2004.09144},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@misc{anderson2018bottomup,
      title={Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering}, 
      author={Peter Anderson and Xiaodong He and Chris Buehler and Damien Teney and Mark Johnson and Stephen Gould and Lei Zhang},
      year={2018},
      eprint={1707.07998},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@article{JDH17,
  title={Billion-scale similarity search with GPUs},
  author={Johnson, Jeff and Douze, Matthijs and J{\'e}gou, Herv{\'e}},
  journal={arXiv preprint arXiv:1702.08734},
  year={2017}
}

Code References

Owner
Minh-Khoi Pham
Passionate Machine Learner
Minh-Khoi Pham
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
Tello Drone Trajectory Tracking

With this library you can track the trajectory of your tello drone or swarm of drones in real time.

Kamran Asgarov 2 Oct 12, 2022
Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Voxel-based Network for Shape Completion by Leveraging Edge Generation This is the PyTorch implementation for the paper "Voxel-based Network for Shape

10 Dec 04, 2022
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022