Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Overview

Patch2Pix for Accurate Image Correspondence Estimation

This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pix: Epipolar-Guided Pixel-Level Correspondences. [Paper] [Video].

Overview To use our code, first download the repository:

git clone [email protected]:GrumpyZhou/patch2pix.git

Setup Running Environment

The code has been tested on Ubuntu (16.04&18.04) with Python 3.7 + Pytorch 1.7.0 + CUDA 10.2.
We recommend to use Anaconda to manage packages and reproduce the paper results. Run the following lines to automatically setup a ready environment for our code.

conda env create -f environment.yml
conda activte patch2pix

Download Pretrained Models

In order to run our examples, one needs to first download our pretrained Patch2Pix model. To further train a Patch2Pix model, one needs to download the pretrained NCNet. We provide the download links in pretrained/download.sh. To download both, one can run

cd pretrained
bash download.sh

Evaluation

❗️ NOTICE ❗️ : In this repository, we only provide examples to estimate correspondences using our Patch2Pix implemenetation.

To reproduce our evalutions on HPatches, Aachen and InLoc benchmarks, we refer you to our toolbox for image matching: image-matching-toolbox. There, you can also find implementation to reproduce the results of other state-of-the-art methods that we compared to in our paper.

Matching Examples

In our notebook examples/visualize_matches.ipynb , we give examples how to obtain matches given a pair of images using both Patch2Pix (our pretrained) and NCNet (our adapted). The example image pairs are borrowed from D2Net, one can easily replace it with your own examples.

Training

Notice the followings are necessary only if you want to train a model yourself.

Data preparation

We use MegaDepth dataset for training. To keep more data for training, we didn't split a validation set from MegaDepth. Instead we use the validation splits of PhotoTourism. The following steps describe how to prepare the same training and validation data that we used.

Preapre Training Data

  1. We preprocess MegaDepth dataset following the preprocessing steps proposed by D2Net. For details, please checkout their "Downloading and preprocessing the MegaDepth dataset" section in their github documentation.

  2. Then place the processed MegaDepth dataset under data/ folder and name it as MegaDepth_undistort (or create a symbolic link for it).

  3. One can directly download our pre-computred training pairs using our download script.

cd data_pairs
bash download.sh

In case one wants to generate pairs with different settings, we provide notebooks to generate pairs from scratch. Once you finish step 1 and 2, the training pairs can be generated using our notebook data_pairs/prep_megadepth_training_pairs.ipynb.

Preapre Validation Data

  1. Use our script to dowload and extract the subset of train and val sequences from the PhotoTourism dataset.
cd data
bash prepare_immatch_val_data.sh
  1. Precompute image pairwise overlappings for fast loading of validation pairs.
# Under the root folder: patch2pix/
python -m data_pairs.precompute_immatch_val_ovs \
		--data_root data/immatch_benchmark/val_dense

Training Examples

To train our best model:

python -m train_patch2pix --gpu 0 \
    --epochs 25 --batch 4 \
    --save_step 1 --plot_counts 20 --data_root 'data' \
    --change_stride --panc 8 --ptmax 400 \
    --pretrain 'pretrained/ncn_ivd_5ep.pth' \
    -lr 0.0005 -lrd 'multistep' 0.2 5 \
    --cls_dthres 50 5 --epi_dthres 50 5  \
    -o 'output/patch2pix' 

The above command will save the log file and checkpoints to the output folder specified by -o. Our best model was trained on a 48GB GPU. To train on a smaller GPU, e.g, with 12 GB, one can either set --batch 1 or --ptmax 250 which defines the maximum number of match proposals to be refined for each image pair. However, those changes might also decrease the training performance according to our experience. Notice, during the testing, our network only requires 12GB GPU.

Usage of Visdom Server Our training script is coded to monitor the training process using Visdom. To enable the monitoring, one needs to:

  1. Run a visdom sever on your localhost, for example:
# Feel free to change the port
python -m visdom.server -port 9333 \
-env_path ~/.visdom/patch2pix
  1. Append options -vh 'localhost' -vp 9333 to the commands of the training example above.

BibTeX

If you use our method or code in your project, please cite our paper:

@inproceedings{ZhouCVPRpatch2pix,
        author       = "Zhou, Qunjie and Sattler, Torsten and Leal-Taixe, Laura",
        title        = "Patch2Pix: Epipolar-Guided Pixel-Level Correspondences",
        booktitle    = "CVPR",
        year         = 2021,
}
Owner
Qunjie Zhou
PhD Candidate at the Dynamic Vision and Learning Group.
Qunjie Zhou
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022