Language Models Can See: Plugging Visual Controls in Text Generation

Overview

Language Models Can See: Plugging Visual Controls in Text Generation

Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lingpeng Kong, and Nigel Collier

This repository contains code, models, and other related resources of our paper [Language Models Can See: Plugging Visual Controls in Text Generation].

If you are also interested in open-ended text generation and would like to see more details of our contrastive search decoding method, please refer to our SimCTG [paper] and [repo].

Replicate has provided a great web [demo] of MAGIC that is super easy to use and to interact with. Check it out!


MAGIC


Catalogue:


1. Introduction:

Generative language models (LMs) such as GPT-2/3 can be prompted to generate text with remarkable quality. While they are designed for text-prompted generation, it remains an open question how the generation process could be guided by modalities beyond text such as images. In this work, we propose a training-free framework, called MAGIC (iMAge-Guided text generatIon with CLIP), for plugging in visual controls in the generation process and enabling LMs to perform multimodal tasks (e.g., image captioning) in a zero-shot manner. MAGIC is a simple yet efficient plug-and-play framework, which directly combines an off-the-shelf LM (i.e., GPT-2) and an image-text matching model (i.e., CLIP) for image-grounded text generation. During decoding, MAGIC influences the generation of the LM by introducing a CLIP-induced score, called magic score, which regularizes the generated result to be semantically related to a given image while being coherent to the previously generated context. Notably, the proposed decoding scheme does not involve any gradient update operation, therefore being computationally efficient. On the challenging task of zero-shot image captioning, MAGIC outperforms the state-of-the-art method by notable margins with a nearly 27 times decoding speedup. MAGIC is a flexible framework and is theoretically compatible with any text generation tasks that incorporate image grounding. In the experiments, we showcase that it is also capable of performing visually grounded story generation given both an image and a text prompt.


2. News:

  • [2022/05/06] MAGIC is publicly released!

3. Citation:

If you find our paper and resources useful, please kindly leave a star and cite our papers. Thanks!

@article{DBLP:journals/corr/abs-2205-02655,
  author    = {Yixuan Su and
               Tian Lan and
               Yahui Liu and
               Fangyu Liu and
               Dani Yogatama and
               Yan Wang and
               Lingpeng Kong and
               Nigel Collier},
  title     = {Language Models Can See: Plugging Visual Controls in Text Generation},
  journal   = {CoRR},
  volume    = {abs/2205.02655},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2205.02655},
  doi       = {10.48550/arXiv.2205.02655},
  eprinttype = {arXiv},
  eprint    = {2205.02655},
  timestamp = {Wed, 11 May 2022 17:29:40 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2205-02655.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

@article{DBLP:journals/corr/abs-2202-06417,
  author    = {Yixuan Su and
               Tian Lan and
               Yan Wang and
               Dani Yogatama and
               Lingpeng Kong and
               Nigel Collier},
  title     = {A Contrastive Framework for Neural Text Generation},
  journal   = {CoRR},
  volume    = {abs/2202.06417},
  year      = {2022},
  url       = {https://arxiv.org/abs/2202.06417},
  eprinttype = {arXiv},
  eprint    = {2202.06417},
  timestamp = {Fri, 18 Feb 2022 12:23:53 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2202-06417.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

4. Environment Setup:

python version: 3.8
pip3 install -r requirements.txt

5. Zero-Shot Image Captioning:

5.1. Implementation of Experiments:

To ensure the reproductity of our work, we provide all related resources to implement our experiments on the task of zero-shot image captioning. Please refer more details [here].

5.2. Example Usage of Magic Search:

In the following, we illustrate how to perform zero-shot image captioning with magic search. Specifically, we show how to generate the results as shown in our case study in the paper.

Open In Colab

5.2.1. Load Language Model:

We first load the language model as:

import sys
sys.path.append(r'./image_captioning/language_model/')
from simctg import SimCTG
language_model_name = r'cambridgeltl/magic_mscoco'
sos_token, pad_token = r'<-start_of_text->', r'<-pad->'
generation_model = SimCTG(language_model_name, sos_token, pad_token)
generation_model.eval()
5.2.2. Load CLIP:

Then, we load the CLIP model as:

import sys
sys.path.append(r'./image_captioning/clip/')
from clip import CLIP
model_name = "openai/clip-vit-base-patch32"
clip = CLIP(model_name)
clip.eval()
5.2.3. Prepare Start Token:

Note that, the language model always starts generation with a start of sentence token. Here, we prepare the input ids of the start token.

import torch
sos_token = r'<-start_of_text->'
start_token = generation_model.tokenizer.tokenize(sos_token)
start_token_id = generation_model.tokenizer.convert_tokens_to_ids(start_token)
input_ids = torch.LongTensor(start_token_id).view(1,-1)
5.2.4. Load Image:

To generate the caption of a random image, we need to load the image as:

from PIL import Image             # to load images
from IPython.display import display # to display images
image_name_list = ['COCO_val2014_000000336777.jpg', 'COCO_val2014_000000182784.jpg', 'COCO_val2014_000000299319.jpg', 'COCO_val2014_000000516750.jpg',
                   'COCO_val2014_000000207151.jpg', 'COCO_val2014_000000078707.jpg', 'COCO_val2014_000000027440.jpg', 'COCO_val2014_000000033645.jpg',
                   'COCO_val2014_000000348905.jpg', 'COCO_val2014_000000545385.jpg', 'COCO_val2014_000000210032.jpg', 'COCO_val2014_000000577526.jpg']
index = 1 
'''
   you can easily reproduce all results shown in our case study (index from 0 to 3) 
   and the results in the appendix (index from 4 to 11).
'''

image_path = r'./image_captioning/example_images/' + image_name_list[index]
image_instance = Image.open(image_path)
display(image_instance)
5.2.5. Zero-Shot Image Captioning with Magic Search:

Now, let's generate the image caption with magic search!

'''
   setup the configurations of magic search
      k: the k in magic search
      alpha: the alpha in magic search
      beta: the beta in magic search
      decoding_len: the number of tokens to generate
'''
k, alpha, beta, decoding_len = 45, 0.1, 2.0, 16
eos_token = '<|endoftext|>'
output = generation_model.magic_search(input_ids, k, 
        alpha, decoding_len, beta, image_instance, clip, 60)
print (output)
'''
   A large cow standing in a street stall.
'''
5.2.6. Reproduce Our Results in the Paper:

If you would like to reproduce all the results shown in the case study and appendix of our paper, you can run this demo file as

python image_caption_demo.py

6. Visually Grounded Story Generation:

6.1. Implementation of Experiments:

To ensure the reproductity of our work, we provide all related resources to implement our experiments on the task of visually grounded story generation. Please refer more details [here].

6.2. Example Usage of Magic Search:

In the following, we illustrate how to perform visually grounded story generation with magic search. Specifically, we show how to generate the results as shown in our case study in the paper.

Open In Colab

6.2.1. Load Language Model:

We first load the language model and prepare the story title as:

import sys
sys.path.append(r'./story_generation/language_model')
from transformers import AutoTokenizer
from simctg import SimCTG
language_model_name = r'cambridgeltl/simctg_rocstories'
tokenizer = AutoTokenizer.from_pretrained(language_model_name)
generation_model = SimCTG(language_model_name, tokenizer.pad_token_id)
generation_model.eval()

import torch
title = 'Ice Cream Tasting <|endoftext|>'
title_tokens = tokenizer.tokenize(title)
title_id_list = tokenizer.convert_tokens_to_ids(title_tokens)
title_ids = torch.LongTensor(title_id_list).view(1,-1)
6.2.2. Load CLIP:

Then, we load the CLIP model as:

import sys
sys.path.append(r'./story_generation/clip')
from clip import CLIP
model_name = "openai/clip-vit-base-patch32"
clip = CLIP(model_name)
clip.eval()
6.3.2. Get the Related Image:

Next, let's get the images that are related to the story tile. We provide two ways of doing it as shown below:

6.3.2.1. Retrieve from Image Index:

The first way is to retrieve the images from a constructed image index. Before running the following commands, please make sure you have built the image index from scrath as described [here] or downloaded our provided image index as described [here].

After the image index is ready, we can load the image index as

# build image index
import sys
sys.path.append(r'./story_generation/image_index')
from imageindex import ImageIndex
index_path = r'./story_generation/data/image_index/images_index_data/index_matrix.txt'
mapping_dict_path = r'./story_generation/data/image_index/images_index_data/mapping_dict.json'
image_folder_prefix_path = r'./story_generation/data/image_index/images/'
index = ImageIndex(index_path, mapping_dict_path, image_folder_prefix_path, clip)

Then, we can retrieve the top-1 images as

image_name_list, image_instance_list = index.search_image(title, top_k=1)
'''
   image_name_list: the list of names of the retrieved images
   image_instance_list: the list of images that we retrieve
'''

Let's see the retrieved images we got

from IPython.display import display
# display the top-1 image
display(image_instance_list[0])
6.3.2.2. Directly Load Image:

Alternatively, if you have not prepared the image index, we have provided these the image in the repo. You can directly load it as

from PIL import Image
image_name_list = ['avopix-284658167.jpg']
image_instance_list = []
for name in image_name_list:
    image_path = r'./story_generation/example_images/' + name
    image_instance = Image.open(image_path)
    image_instance_list.append(image_instance)
6.3.3. Visually Grounded Story Generation with Magic Search:

[Note] Recall that, in this example, our story title is 'Ice Cream Tasting <|endoftext|>'.

Now, let's generate the story conditioned on the retrieved image

from IPython.display import display
k, alpha, beta, decoding_len  = 5, 0.6, 0.15, 100
'''
   The k, alpha, beta correspond to the k, alpha, beta in magic search
'''
image_instance = image_instance_list[0]
eos_token = r'<|endoftext|>'
output, _ = generation_model.magic_search(title_ids, k, alpha, decoding_len, beta, image_instance, 
        clip, 60, eos_token)
_, generated_story = generation_model.parse_generated_result(output, num_of_sentences_to_keep=5)
print (generated_story)
display(image_instance)
'''
   My family went to a ice cream shop. They ordered three flavors of ice cream. The first one was 
   strawberry, the second was chocolate, and the third was orange. I was excited to try all three 
   flavors. It was very good and I had a great time at the ice cream shop.
'''

Then, let's see what we can get using the vanilla contrastive search without the image grounding.

k, alpha, decoding_len  = 5, 0.6, 100
'''
   The k and alpha correspond to the k and alpha in contrastive search
'''
eos_token = r'<|endoftext|>'
output, _ = generation_model.fast_contrastive_search(title_ids, k, alpha, decoding_len, eos_token)
_, generated_story = generation_model.parse_generated_result(output, num_of_sentences_to_keep=5)
print (generated_story)
'''
   My family went to a ice cream shop. We ordered the Ice Cream Truck. It was delicious. The customer 
   service was terrible. We had to leave for another day.
'''
6.3.4. Reproduce Our Results in the Paper:

If you would like to reproduce all the results shown in the case study and appendix of our paper, you can run this demo file as

python story_generation_demo.py

7. Contact

If you have any questions, feel free to contact me via (ys484 at cam.ac.uk).


8. MAGIC Elsewhere

We thank the community's effort for extending MAGIC!

  • Replicate has provided a great [demo] of MAGIC that is super easy to use. Thanks for the effort!
Owner
Yixuan Su
I am a third-year (final-year) Ph.D. student at the Language Technology Lab of the University of Cambridge.
Yixuan Su
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

RefinerViT This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm an

101 Dec 29, 2022
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kianté Brantley 25 Apr 28, 2022
Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line

NAVER/LINE Vision 357 Jan 04, 2023
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020