Language Models Can See: Plugging Visual Controls in Text Generation

Overview

Language Models Can See: Plugging Visual Controls in Text Generation

Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lingpeng Kong, and Nigel Collier

This repository contains code, models, and other related resources of our paper [Language Models Can See: Plugging Visual Controls in Text Generation].

If you are also interested in open-ended text generation and would like to see more details of our contrastive search decoding method, please refer to our SimCTG [paper] and [repo].

Replicate has provided a great web [demo] of MAGIC that is super easy to use and to interact with. Check it out!


MAGIC


Catalogue:


1. Introduction:

Generative language models (LMs) such as GPT-2/3 can be prompted to generate text with remarkable quality. While they are designed for text-prompted generation, it remains an open question how the generation process could be guided by modalities beyond text such as images. In this work, we propose a training-free framework, called MAGIC (iMAge-Guided text generatIon with CLIP), for plugging in visual controls in the generation process and enabling LMs to perform multimodal tasks (e.g., image captioning) in a zero-shot manner. MAGIC is a simple yet efficient plug-and-play framework, which directly combines an off-the-shelf LM (i.e., GPT-2) and an image-text matching model (i.e., CLIP) for image-grounded text generation. During decoding, MAGIC influences the generation of the LM by introducing a CLIP-induced score, called magic score, which regularizes the generated result to be semantically related to a given image while being coherent to the previously generated context. Notably, the proposed decoding scheme does not involve any gradient update operation, therefore being computationally efficient. On the challenging task of zero-shot image captioning, MAGIC outperforms the state-of-the-art method by notable margins with a nearly 27 times decoding speedup. MAGIC is a flexible framework and is theoretically compatible with any text generation tasks that incorporate image grounding. In the experiments, we showcase that it is also capable of performing visually grounded story generation given both an image and a text prompt.


2. News:

  • [2022/05/06] MAGIC is publicly released!

3. Citation:

If you find our paper and resources useful, please kindly leave a star and cite our papers. Thanks!

@article{DBLP:journals/corr/abs-2205-02655,
  author    = {Yixuan Su and
               Tian Lan and
               Yahui Liu and
               Fangyu Liu and
               Dani Yogatama and
               Yan Wang and
               Lingpeng Kong and
               Nigel Collier},
  title     = {Language Models Can See: Plugging Visual Controls in Text Generation},
  journal   = {CoRR},
  volume    = {abs/2205.02655},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2205.02655},
  doi       = {10.48550/arXiv.2205.02655},
  eprinttype = {arXiv},
  eprint    = {2205.02655},
  timestamp = {Wed, 11 May 2022 17:29:40 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2205-02655.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

@article{DBLP:journals/corr/abs-2202-06417,
  author    = {Yixuan Su and
               Tian Lan and
               Yan Wang and
               Dani Yogatama and
               Lingpeng Kong and
               Nigel Collier},
  title     = {A Contrastive Framework for Neural Text Generation},
  journal   = {CoRR},
  volume    = {abs/2202.06417},
  year      = {2022},
  url       = {https://arxiv.org/abs/2202.06417},
  eprinttype = {arXiv},
  eprint    = {2202.06417},
  timestamp = {Fri, 18 Feb 2022 12:23:53 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2202-06417.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

4. Environment Setup:

python version: 3.8
pip3 install -r requirements.txt

5. Zero-Shot Image Captioning:

5.1. Implementation of Experiments:

To ensure the reproductity of our work, we provide all related resources to implement our experiments on the task of zero-shot image captioning. Please refer more details [here].

5.2. Example Usage of Magic Search:

In the following, we illustrate how to perform zero-shot image captioning with magic search. Specifically, we show how to generate the results as shown in our case study in the paper.

Open In Colab

5.2.1. Load Language Model:

We first load the language model as:

import sys
sys.path.append(r'./image_captioning/language_model/')
from simctg import SimCTG
language_model_name = r'cambridgeltl/magic_mscoco'
sos_token, pad_token = r'<-start_of_text->', r'<-pad->'
generation_model = SimCTG(language_model_name, sos_token, pad_token)
generation_model.eval()
5.2.2. Load CLIP:

Then, we load the CLIP model as:

import sys
sys.path.append(r'./image_captioning/clip/')
from clip import CLIP
model_name = "openai/clip-vit-base-patch32"
clip = CLIP(model_name)
clip.eval()
5.2.3. Prepare Start Token:

Note that, the language model always starts generation with a start of sentence token. Here, we prepare the input ids of the start token.

import torch
sos_token = r'<-start_of_text->'
start_token = generation_model.tokenizer.tokenize(sos_token)
start_token_id = generation_model.tokenizer.convert_tokens_to_ids(start_token)
input_ids = torch.LongTensor(start_token_id).view(1,-1)
5.2.4. Load Image:

To generate the caption of a random image, we need to load the image as:

from PIL import Image             # to load images
from IPython.display import display # to display images
image_name_list = ['COCO_val2014_000000336777.jpg', 'COCO_val2014_000000182784.jpg', 'COCO_val2014_000000299319.jpg', 'COCO_val2014_000000516750.jpg',
                   'COCO_val2014_000000207151.jpg', 'COCO_val2014_000000078707.jpg', 'COCO_val2014_000000027440.jpg', 'COCO_val2014_000000033645.jpg',
                   'COCO_val2014_000000348905.jpg', 'COCO_val2014_000000545385.jpg', 'COCO_val2014_000000210032.jpg', 'COCO_val2014_000000577526.jpg']
index = 1 
'''
   you can easily reproduce all results shown in our case study (index from 0 to 3) 
   and the results in the appendix (index from 4 to 11).
'''

image_path = r'./image_captioning/example_images/' + image_name_list[index]
image_instance = Image.open(image_path)
display(image_instance)
5.2.5. Zero-Shot Image Captioning with Magic Search:

Now, let's generate the image caption with magic search!

'''
   setup the configurations of magic search
      k: the k in magic search
      alpha: the alpha in magic search
      beta: the beta in magic search
      decoding_len: the number of tokens to generate
'''
k, alpha, beta, decoding_len = 45, 0.1, 2.0, 16
eos_token = '<|endoftext|>'
output = generation_model.magic_search(input_ids, k, 
        alpha, decoding_len, beta, image_instance, clip, 60)
print (output)
'''
   A large cow standing in a street stall.
'''
5.2.6. Reproduce Our Results in the Paper:

If you would like to reproduce all the results shown in the case study and appendix of our paper, you can run this demo file as

python image_caption_demo.py

6. Visually Grounded Story Generation:

6.1. Implementation of Experiments:

To ensure the reproductity of our work, we provide all related resources to implement our experiments on the task of visually grounded story generation. Please refer more details [here].

6.2. Example Usage of Magic Search:

In the following, we illustrate how to perform visually grounded story generation with magic search. Specifically, we show how to generate the results as shown in our case study in the paper.

Open In Colab

6.2.1. Load Language Model:

We first load the language model and prepare the story title as:

import sys
sys.path.append(r'./story_generation/language_model')
from transformers import AutoTokenizer
from simctg import SimCTG
language_model_name = r'cambridgeltl/simctg_rocstories'
tokenizer = AutoTokenizer.from_pretrained(language_model_name)
generation_model = SimCTG(language_model_name, tokenizer.pad_token_id)
generation_model.eval()

import torch
title = 'Ice Cream Tasting <|endoftext|>'
title_tokens = tokenizer.tokenize(title)
title_id_list = tokenizer.convert_tokens_to_ids(title_tokens)
title_ids = torch.LongTensor(title_id_list).view(1,-1)
6.2.2. Load CLIP:

Then, we load the CLIP model as:

import sys
sys.path.append(r'./story_generation/clip')
from clip import CLIP
model_name = "openai/clip-vit-base-patch32"
clip = CLIP(model_name)
clip.eval()
6.3.2. Get the Related Image:

Next, let's get the images that are related to the story tile. We provide two ways of doing it as shown below:

6.3.2.1. Retrieve from Image Index:

The first way is to retrieve the images from a constructed image index. Before running the following commands, please make sure you have built the image index from scrath as described [here] or downloaded our provided image index as described [here].

After the image index is ready, we can load the image index as

# build image index
import sys
sys.path.append(r'./story_generation/image_index')
from imageindex import ImageIndex
index_path = r'./story_generation/data/image_index/images_index_data/index_matrix.txt'
mapping_dict_path = r'./story_generation/data/image_index/images_index_data/mapping_dict.json'
image_folder_prefix_path = r'./story_generation/data/image_index/images/'
index = ImageIndex(index_path, mapping_dict_path, image_folder_prefix_path, clip)

Then, we can retrieve the top-1 images as

image_name_list, image_instance_list = index.search_image(title, top_k=1)
'''
   image_name_list: the list of names of the retrieved images
   image_instance_list: the list of images that we retrieve
'''

Let's see the retrieved images we got

from IPython.display import display
# display the top-1 image
display(image_instance_list[0])
6.3.2.2. Directly Load Image:

Alternatively, if you have not prepared the image index, we have provided these the image in the repo. You can directly load it as

from PIL import Image
image_name_list = ['avopix-284658167.jpg']
image_instance_list = []
for name in image_name_list:
    image_path = r'./story_generation/example_images/' + name
    image_instance = Image.open(image_path)
    image_instance_list.append(image_instance)
6.3.3. Visually Grounded Story Generation with Magic Search:

[Note] Recall that, in this example, our story title is 'Ice Cream Tasting <|endoftext|>'.

Now, let's generate the story conditioned on the retrieved image

from IPython.display import display
k, alpha, beta, decoding_len  = 5, 0.6, 0.15, 100
'''
   The k, alpha, beta correspond to the k, alpha, beta in magic search
'''
image_instance = image_instance_list[0]
eos_token = r'<|endoftext|>'
output, _ = generation_model.magic_search(title_ids, k, alpha, decoding_len, beta, image_instance, 
        clip, 60, eos_token)
_, generated_story = generation_model.parse_generated_result(output, num_of_sentences_to_keep=5)
print (generated_story)
display(image_instance)
'''
   My family went to a ice cream shop. They ordered three flavors of ice cream. The first one was 
   strawberry, the second was chocolate, and the third was orange. I was excited to try all three 
   flavors. It was very good and I had a great time at the ice cream shop.
'''

Then, let's see what we can get using the vanilla contrastive search without the image grounding.

k, alpha, decoding_len  = 5, 0.6, 100
'''
   The k and alpha correspond to the k and alpha in contrastive search
'''
eos_token = r'<|endoftext|>'
output, _ = generation_model.fast_contrastive_search(title_ids, k, alpha, decoding_len, eos_token)
_, generated_story = generation_model.parse_generated_result(output, num_of_sentences_to_keep=5)
print (generated_story)
'''
   My family went to a ice cream shop. We ordered the Ice Cream Truck. It was delicious. The customer 
   service was terrible. We had to leave for another day.
'''
6.3.4. Reproduce Our Results in the Paper:

If you would like to reproduce all the results shown in the case study and appendix of our paper, you can run this demo file as

python story_generation_demo.py

7. Contact

If you have any questions, feel free to contact me via (ys484 at cam.ac.uk).


8. MAGIC Elsewhere

We thank the community's effort for extending MAGIC!

  • Replicate has provided a great [demo] of MAGIC that is super easy to use. Thanks for the effort!
Owner
Yixuan Su
I am a third-year (final-year) Ph.D. student at the Language Technology Lab of the University of Cambridge.
Yixuan Su
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022