Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Overview

Reinforcement Learning with Learned Fourier Features

State-space Soft Actor-Critic Experiments

Move to the state-SAC-LFF repository.

cd state-SAC-LFF

To install the dependencies, use the provided environment.yml file

conda env create -f environment.yml

To run an experiment, the template for MLP and LFF experiments, respectively, are:

python main.py --policy PytorchSAC --env dm.quadruped.run --start_timesteps 5000 --hidden_dim 1024 --batch_size 1024 --n_hidden 3
python main.py --policy PytorchSAC --env dm.quadruped.run --start_timesteps 5000 --hidden_dim 1024 --batch_size 1024 --n_hidden 2 \
               --network_class FourierMLP --sigma 0.001 --fourier_dim 1024 --train_B --concatenate_fourier

The only thing that changes between the baseline is the number of hidden layers (we reduce by 1 to keep parameter count roughly the same), the network_class, the fourier_dim, sigma, train_B, and concatenate_fourier.

Image-space Soft Actor-Critic Experiments

Move to the image-SAC-LFF repository.

cd image-SAC-LFF

Install RAD dependencies:

conda env create -f conda_env.yml

To run an experiment, the template for CNN and CNN+LFF experiments, respectively, are:

python train.py --domain_name hopper --task_name hop --encoder_type fourier_pixel --action_repeat 4 \
                --num_eval_episodes 10 \--pre_transform_image_size 100 --image_size 84 --agent rad_sac \
                --frame_stack 3 --data_augs crop --critic_lr 1e-3 --actor_lr 1e-3 --eval_freq 10000 --batch_size 128 \
                --num_train_steps 1000000 --fourier_dim 128 --sigma 0.1 --train_B --concatenate_fourier
python train.py --domain_name hopper --task_name hop --encoder_type fair_pixel --action_repeat 4 \
                --num_eval_episodes 10 \--pre_transform_image_size 100 --image_size 84 --agent rad_sac \
                --frame_stack 3 --data_augs crop --critic_lr 1e-3 --actor_lr 1e-3 --eval_freq 10000 --batch_size 128 \
                --num_train_steps 1000000

Proximal Policy Optimization Experiments

Move to the state-PPO-LFF repository.

cd pytorch-a2c-ppo-acktr-gail

Install PPO dependencies:

conda env create -f environment.yml

To run an experiment, the template for MLP and LFF experiments, respectively, are:

python main.py --env-name Hopper-v2 --algo ppo --use-gae --log-interval 1 --num-steps 2048 --num-processes 1 \
               --lr 3e-4 --entropy-coef 0 --value-loss-coef 0.5 --ppo-epoch 10 --num-mini-batch 32 --gamma 0.99 \
               --gae-lambda 0.95 --num-env-steps 1000000 --use-linear-lr-decay --use-proper-time-limits \
               --hidden_dim 256 --network_class MLP --n_hidden 2 --seed 10
python main.py --env-name Hopper-v2 --algo ppo --use-gae --log-interval 1 --num-steps 2048 --num-processes 1 \
               --lr 3e-4 --entropy-coef 0 --value-loss-coef 0.5 --ppo-epoch 10 --num-mini-batch 32 --gamma 0.99 \
               --gae-lambda 0.95 --num-env-steps 1000000 --use-linear-lr-decay --use-proper-time-limits \
               --hidden_dim 256 --network_class FourierMLP --n_hidden 2 --sigma 0.01 --fourier_dim 64 \ 
               --concatenate_fourier --train_B --seed 10

Acknowledgements

We built the state-based SAC codebase off the TD3 repo by Fujimoto et al. We especially appreciated its lightweight bare-bones training loop. For the state-based SAC algorithm implementation and hyperparameters, we used this PyTorch SAC repo by Yarats and Kostrikov. For the SAC+RAD image-based experiments, we used the authors' implementation. Finally, we built off this PPO codebase by Ilya Kostrikov.

Owner
Alex Li
PhD student in machine learning at Carnegie Mellon University. Prev: undergrad at UC Berkeley.
Alex Li
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Implementation of RegretNet with Pytorch

Dependencies are Python 3, a recent PyTorch, numpy/scipy, tqdm, future and tensorboard. Plotting with Matplotlib. Implementation of the neural network

Horris zhGu 1 Nov 05, 2021
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023