Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

Related tags

Deep LearningMGANs
Overview

MGANs

Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks".

See this video for a quick explaination for our method and results.

Setup

As building Torch with the latest CUDA is a troublesome work, we recommend following the following steps to people who want to reproduce the results: It has been tested on Ubuntu with CUDA 10.

Step One: Install CUDA 10 and CUDNN 7.6.2

If you have a fresh Ubuntu, we recommend Lambda Stack which helps you install the latest drivers, libraries, and frameworks for deep learning. Otherwise, you can install the CUDA toolkit and CUDNN from these links:

Step Two: Install Torch

git clone https://github.com/nagadomi/distro.git ~/torch --recursive
cd ~/torch
./install-deps
./clean.sh
./update.sh

. ~/torch/install/bin/torch-activate
sudo apt-get install libprotobuf-dev protobuf-compiler
luarocks install loadcaffe

Demo

cd code
th demo_MGAN.lua

Training

Simply cd into folder "code/" and run the training script.

th train.lua

The current script is an example of training a network from 100 ImageNet photos and a single painting from Van Gogh. The input data are organized in the following way:

  • "Dataset/VG_Alpilles_ImageNet100/ContentInitial": 5 training ImageNet photos to initialize the discriminator.
  • "Dataset/VG_Alpilles_ImageNet100/ContentTrain": 100 training ImageNet photos.
  • "Dataset/VG_Alpilles_ImageNet100/ContentTest": 10 testing ImageNet photos (for later inspection).
  • "Dataset/VG_Alpilles_ImageNet100/Style": Van Gogh's painting.

The training process has three main steps:

  • Use MDAN to generate training images (MDAN_wrapper.lua).
  • Data Augmentation (AG_wrapper.lua).
  • Train MGAN (MDAN_wrapper.lua).

Testing

The testing process has two steps:

  • Step 1: call "th release_MGAN.lua" to concatenate the VGG encoder with the generator.
  • Step 2: call "th demo_MGAN.lua" to test the network with new photos.

Display

You can use the browser based display package to display the training process for both MDANs and MGANs.

  • Install: luarocks install https://raw.githubusercontent.com/szym/display/master/display-scm-0.rockspec
  • Call: th -ldisplay.start
  • See results at this URL: http://localhost:8000

Example

We chose Van Gogh's "Olive Trees with the Alpilles in the Background" as the reference texture.

We then transfer 100 ImageNet photos into the same style with the proposed MDANs method. MDANs take an iterative deconvolutional approach, which is similar to "A Neural Algorithm of Artistic Style" by Leon A. Gatys et al. and our previous work "CNNMRF". Differently, it uses adversarial training instead of gaussian statistics ("A Neural Algorithm of Artistic Style) or nearest neighbour search "CNNMRF". Here are some transferred results from MDANs:

The results look nice, so we know adversarial training is able to produce results that are comparable to previous methods. In other experiments we observed that gaussian statistics work remarkable well for painterly textures, but can sometimes be too flexible for photorealistic textures; nearest-neighbor search preserve photorealistic details but can be too rigid for deformable textures. In some sense MDANs offers a relatively more balanced choice with advaserial training. See our paper for more discussoins.

Like previous deconvolutional methods, MDANs is VERY slow. A Nvidia Titan X takes about one minute to transfer a photo of 384 squared. To make it faster, we replace the deconvolutional process by a feed-forward network (MGANs). The feed-forward network takes long time to train (45 minutes for this example on a Titan X), but offers significant speed up in testing time. Here are some results from MGANs:

It is our expectation that MGANs will trade quality for speed. The question is: how much? Here are some comparisons between the result of MDANs and MGANs:

In general MDANs (middle) give more stylished results, and does a much better job at homegenous background areas (the last two cases). But sometimes MGANs (right) is able to produce comparable results (the first two).

And MGANs run at least two orders of magnitudes faster.

Final remark

There are concurrent works that try to make deep texture synthesis faster. For example, Ulyanov et al. and Johnson et al. also achieved significant speed up and very nice results with a feed-forward architecture. Both of these two methods used the gaussian statsitsics constraint proposed by Gatys et al.. We believe our method is a good complementary: by changing the gaussian statistics constraint to discrimnative networks trained with Markovian patches, it is possible to model more complex texture manifolds (see discussion in our paper).

Last, here are some prelimiary results of training a MGANs for photorealistic synthesis. It learns from 200k face images from CelebA. The network then transfers VGG_19 encoding (layer ReLU5_1) of new face images (left) into something interesting (right). The synthesized faces have the same poses/layouts as the input faces, but look like different persons :-)

Acknowledgement

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023