Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

Related tags

Deep LearningMGANs
Overview

MGANs

Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks".

See this video for a quick explaination for our method and results.

Setup

As building Torch with the latest CUDA is a troublesome work, we recommend following the following steps to people who want to reproduce the results: It has been tested on Ubuntu with CUDA 10.

Step One: Install CUDA 10 and CUDNN 7.6.2

If you have a fresh Ubuntu, we recommend Lambda Stack which helps you install the latest drivers, libraries, and frameworks for deep learning. Otherwise, you can install the CUDA toolkit and CUDNN from these links:

Step Two: Install Torch

git clone https://github.com/nagadomi/distro.git ~/torch --recursive
cd ~/torch
./install-deps
./clean.sh
./update.sh

. ~/torch/install/bin/torch-activate
sudo apt-get install libprotobuf-dev protobuf-compiler
luarocks install loadcaffe

Demo

cd code
th demo_MGAN.lua

Training

Simply cd into folder "code/" and run the training script.

th train.lua

The current script is an example of training a network from 100 ImageNet photos and a single painting from Van Gogh. The input data are organized in the following way:

  • "Dataset/VG_Alpilles_ImageNet100/ContentInitial": 5 training ImageNet photos to initialize the discriminator.
  • "Dataset/VG_Alpilles_ImageNet100/ContentTrain": 100 training ImageNet photos.
  • "Dataset/VG_Alpilles_ImageNet100/ContentTest": 10 testing ImageNet photos (for later inspection).
  • "Dataset/VG_Alpilles_ImageNet100/Style": Van Gogh's painting.

The training process has three main steps:

  • Use MDAN to generate training images (MDAN_wrapper.lua).
  • Data Augmentation (AG_wrapper.lua).
  • Train MGAN (MDAN_wrapper.lua).

Testing

The testing process has two steps:

  • Step 1: call "th release_MGAN.lua" to concatenate the VGG encoder with the generator.
  • Step 2: call "th demo_MGAN.lua" to test the network with new photos.

Display

You can use the browser based display package to display the training process for both MDANs and MGANs.

  • Install: luarocks install https://raw.githubusercontent.com/szym/display/master/display-scm-0.rockspec
  • Call: th -ldisplay.start
  • See results at this URL: http://localhost:8000

Example

We chose Van Gogh's "Olive Trees with the Alpilles in the Background" as the reference texture.

We then transfer 100 ImageNet photos into the same style with the proposed MDANs method. MDANs take an iterative deconvolutional approach, which is similar to "A Neural Algorithm of Artistic Style" by Leon A. Gatys et al. and our previous work "CNNMRF". Differently, it uses adversarial training instead of gaussian statistics ("A Neural Algorithm of Artistic Style) or nearest neighbour search "CNNMRF". Here are some transferred results from MDANs:

The results look nice, so we know adversarial training is able to produce results that are comparable to previous methods. In other experiments we observed that gaussian statistics work remarkable well for painterly textures, but can sometimes be too flexible for photorealistic textures; nearest-neighbor search preserve photorealistic details but can be too rigid for deformable textures. In some sense MDANs offers a relatively more balanced choice with advaserial training. See our paper for more discussoins.

Like previous deconvolutional methods, MDANs is VERY slow. A Nvidia Titan X takes about one minute to transfer a photo of 384 squared. To make it faster, we replace the deconvolutional process by a feed-forward network (MGANs). The feed-forward network takes long time to train (45 minutes for this example on a Titan X), but offers significant speed up in testing time. Here are some results from MGANs:

It is our expectation that MGANs will trade quality for speed. The question is: how much? Here are some comparisons between the result of MDANs and MGANs:

In general MDANs (middle) give more stylished results, and does a much better job at homegenous background areas (the last two cases). But sometimes MGANs (right) is able to produce comparable results (the first two).

And MGANs run at least two orders of magnitudes faster.

Final remark

There are concurrent works that try to make deep texture synthesis faster. For example, Ulyanov et al. and Johnson et al. also achieved significant speed up and very nice results with a feed-forward architecture. Both of these two methods used the gaussian statsitsics constraint proposed by Gatys et al.. We believe our method is a good complementary: by changing the gaussian statistics constraint to discrimnative networks trained with Markovian patches, it is possible to model more complex texture manifolds (see discussion in our paper).

Last, here are some prelimiary results of training a MGANs for photorealistic synthesis. It learns from 200k face images from CelebA. The network then transfers VGG_19 encoding (layer ReLU5_1) of new face images (left) into something interesting (right). The synthesized faces have the same poses/layouts as the input faces, but look like different persons :-)

Acknowledgement

A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"

Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E

Tauhid Khan 15 Dec 10, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022