2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

Overview

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Chen, Huazhu Fu, Debesh Jha, & Ling Shao.

This repository provides code for paper"Progressively Normalized Self-Attention Network for Video Polyp Segmentation" published at the MICCAI-2021 conference (arXiv Version | δΈ­ζ–‡η‰ˆ). If you have any questions about our paper, feel free to contact me. And if you like our PNS-Net or evaluation toolbox for your personal research, please cite this paper (BibTeX).

Features

  • Hyper Real-time Speed: Our method, named Progressively Normalized Self-Attention Network (PNS-Net), can efficiently learn representations from polyp videos with real-time speed (~140fps) on a single NVIDIA RTX 2080 GPU without any post-processing techniques (e.g., Dense-CRF).
  • Plug-and-Play Module: The proposed core module, termed Normalized Self-attention (NS), utilizes channel split,query-dependent, and normalization rules to reduce the computational cost and improve the accuracy, respectively. Note that this module can be flexibly plugged into any framework customed.
  • Cutting-edge Performance: Experiments on three challenging video polyp segmentation (VPS) datasets demonstrate that the proposed PNS-Net achieves state-of-the-art performance.
  • One-key Evaluation Toolbox: We release the first one-key evaluation toolbox in the VPS field.

1.1. πŸ”₯ NEWS πŸ”₯ :

  • [2021/06/25] πŸ”₯ Our paper have been elected to be honred a MICCAI Student Travel Award.
  • [2021/06/19] πŸ”₯ A short introduction of our paper is available on my YouTube channel (2min).
  • [2021/06/18] Release the inference code! The whole project will be available at the time of MICCAI-2021.
  • [2021/06/18] The Chinese translation of our paper is coming, please enjoy it [pdf].
  • [2021/05/27] Uploading the training/testing dataset, snapshot, and benchmarking results.
  • [2021/05/14] Our work is provisionally accepted at MICCAI 2021. Many thanks to my collaborator Yu-Cheng Chou and supervisor Prof. Deng-Ping Fan.
  • [2021/03/10] Create repository.

1.2. Table of Contents

Table of contents generated with markdown-toc

1.3. State-of-the-art Approaches

  1. "PraNet: Parallel Reverse Attention Network for Polyp Segmentation" MICCAI, 2020. doi: https://arxiv.org/pdf/2006.11392.pdf
  2. "Adaptive context selection for polyp segmentation" MICCAI, 2020. doi: https://link.springer.com/chapter/10.1007/978-3-030-59725-2_25
  3. "Resunet++: An advanced architecture for medical image segmentation" IEEE ISM, 2019 doi: https://arxiv.org/pdf/1911.07067.pdf
  4. "Unet++: A nested u-net architecture for medical image segmentation" IEEE TMI, 2019 doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329239/
  5. "U-Net: Convolutional networks for biomed- ical image segmentation" MICCAI, 2015. doi: https://arxiv.org/pdf/1505.04597.pdf

2. Overview

2.1. Introduction

Existing video polyp segmentation (VPS) models typically employ convolutional neural networks (CNNs) to extract features. However, due to their limited receptive fields, CNNs can not fully exploit the global temporal and spatial information in successive video frames, resulting in false-positive segmentation results. In this paper, we propose the novel PNS-Net (Progressively Normalized Self-attention Network), which can efficiently learn representations from polyp videos with real-time speed (~140fps) on a single RTX 2080 GPU and no post-processing.

Our PNS-Net is based solely on a basic normalized self-attention block, dispensing with recurrence and CNNs entirely. Experiments on challenging VPS datasets demonstrate that the proposed PNS-Net achieves state-of-the-art performance. We also conduct extensive experiments to study the effectiveness of the channel split, soft-attention, and progressive learning strategy. We find that our PNS-Net works well under different settings, making it a promising solution to the VPS task.

2.2. Framework Overview


Figure 1: Overview of the proposed PNS-Net, including the normalized self-attention block (see Β§ 2.1) with a stacked (Γ—R) learning strategy. See Β§ 2 in the paper for details.

2.3. Qualitative Results


Figure 2: Qualitative Results.

3. Proposed Baseline

3.1. Training/Testing

The training and testing experiments are conducted using PyTorch with a single GeForce RTX 2080 GPU of 8 GB Memory.

  1. Configuring your environment (Prerequisites):

    Note that PNS-Net is only tested on Ubuntu OS with the following environments. It may work on other operating systems as well but we do not guarantee that it will.

    • Creating a virtual environment in terminal:

    conda create -n PNSNet python=3.6.

    • Installing necessary packages PyTorch 1.1:
    conda create -n PNSNet python=3.6
    conda activate PNSNet
    conda install pytorch=1.1.0 torchvision -c pytorch
    pip install tensorboardX tqdm Pillow==6.2.2
    pip install git+https://github.com/pytorch/[email protected]
    • Our core design is built on CUDA OP with torchlib. Please ensure the base CUDA toolkit version is 10.x (not at conda env), and then build the NS Block:
    cd ./lib/PNS
    python setup.py build develop
  2. Downloading necessary data:

  3. Training Configuration:

    • First, run python MyTrain_Pretrain.py in the terminal for pretraining, and then, run python MyTrain_finetune.py for finetuning.

    • Just enjoy it! Finish it and the snapshot would save in ./snapshot/PNS-Net/*.

  4. Testing Configuration:

    • After you download all the pre-trained model and testing dataset, just run MyTest_finetune.py to generate the final prediction map in ./res.

    • Just enjoy it!

    • The prediction results of all competitors and our PNS-Net can be found at Google Drive (7MB).

3.2 Evaluating your trained model:

One-key evaluation is written in MATLAB code (link), please follow this the instructions in ./eval/main_VPS.m and just run it to generate the evaluation results in ./eval-Result/.

4. Citation

Please cite our paper if you find the work useful:

@inproceedings{ji2021pnsnet,
  title={Progressively Normalized Self-Attention Network for Video Polyp Segmentation},
  author={Ji, Ge-Peng and Chou, Yu-Cheng and Fan, Deng-Ping and Chen, Geng and Jha, Debesh and Fu, Huazhu and Shao, Ling},
  booktitle={MICCAI},
  year={2021}
}

5. TODO LIST

If you want to improve the usability or any piece of advice, please feel free to contact me directly (E-mail).

  • Support NVIDIA APEX training.

  • Support different backbones ( VGGNet, ResNet, ResNeXt, iResNet, and ResNeSt etc.)

  • Support distributed training.

  • Support lightweight architecture and real-time inference, like MobileNet, SqueezeNet.

  • Support distributed training

  • Add more comprehensive competitors.

6. FAQ

  1. If the image cannot be loaded on the page (mostly in the domestic network situations).

    Solution Link


7. Acknowledgements

This code is built on SINetV2 (PyTorch) and PyramidCSA (PyTorch). We thank the authors for sharing the codes.

⬆ back to top

Owner
Ge-Peng Ji (Daniel)
Computer Vision & Medical Imaging
Ge-Peng Ji (Daniel)
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
labelpix is a graphical image labeling interface for drawing bounding boxes

Welcome to labelpix πŸ‘‹ labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx

schissmantics 26 May 24, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! πŸš€

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022