2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

Overview

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Chen, Huazhu Fu, Debesh Jha, & Ling Shao.

This repository provides code for paper"Progressively Normalized Self-Attention Network for Video Polyp Segmentation" published at the MICCAI-2021 conference (arXiv Version | δΈ­ζ–‡η‰ˆ). If you have any questions about our paper, feel free to contact me. And if you like our PNS-Net or evaluation toolbox for your personal research, please cite this paper (BibTeX).

Features

  • Hyper Real-time Speed: Our method, named Progressively Normalized Self-Attention Network (PNS-Net), can efficiently learn representations from polyp videos with real-time speed (~140fps) on a single NVIDIA RTX 2080 GPU without any post-processing techniques (e.g., Dense-CRF).
  • Plug-and-Play Module: The proposed core module, termed Normalized Self-attention (NS), utilizes channel split,query-dependent, and normalization rules to reduce the computational cost and improve the accuracy, respectively. Note that this module can be flexibly plugged into any framework customed.
  • Cutting-edge Performance: Experiments on three challenging video polyp segmentation (VPS) datasets demonstrate that the proposed PNS-Net achieves state-of-the-art performance.
  • One-key Evaluation Toolbox: We release the first one-key evaluation toolbox in the VPS field.

1.1. πŸ”₯ NEWS πŸ”₯ :

  • [2021/06/25] πŸ”₯ Our paper have been elected to be honred a MICCAI Student Travel Award.
  • [2021/06/19] πŸ”₯ A short introduction of our paper is available on my YouTube channel (2min).
  • [2021/06/18] Release the inference code! The whole project will be available at the time of MICCAI-2021.
  • [2021/06/18] The Chinese translation of our paper is coming, please enjoy it [pdf].
  • [2021/05/27] Uploading the training/testing dataset, snapshot, and benchmarking results.
  • [2021/05/14] Our work is provisionally accepted at MICCAI 2021. Many thanks to my collaborator Yu-Cheng Chou and supervisor Prof. Deng-Ping Fan.
  • [2021/03/10] Create repository.

1.2. Table of Contents

Table of contents generated with markdown-toc

1.3. State-of-the-art Approaches

  1. "PraNet: Parallel Reverse Attention Network for Polyp Segmentation" MICCAI, 2020. doi: https://arxiv.org/pdf/2006.11392.pdf
  2. "Adaptive context selection for polyp segmentation" MICCAI, 2020. doi: https://link.springer.com/chapter/10.1007/978-3-030-59725-2_25
  3. "Resunet++: An advanced architecture for medical image segmentation" IEEE ISM, 2019 doi: https://arxiv.org/pdf/1911.07067.pdf
  4. "Unet++: A nested u-net architecture for medical image segmentation" IEEE TMI, 2019 doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329239/
  5. "U-Net: Convolutional networks for biomed- ical image segmentation" MICCAI, 2015. doi: https://arxiv.org/pdf/1505.04597.pdf

2. Overview

2.1. Introduction

Existing video polyp segmentation (VPS) models typically employ convolutional neural networks (CNNs) to extract features. However, due to their limited receptive fields, CNNs can not fully exploit the global temporal and spatial information in successive video frames, resulting in false-positive segmentation results. In this paper, we propose the novel PNS-Net (Progressively Normalized Self-attention Network), which can efficiently learn representations from polyp videos with real-time speed (~140fps) on a single RTX 2080 GPU and no post-processing.

Our PNS-Net is based solely on a basic normalized self-attention block, dispensing with recurrence and CNNs entirely. Experiments on challenging VPS datasets demonstrate that the proposed PNS-Net achieves state-of-the-art performance. We also conduct extensive experiments to study the effectiveness of the channel split, soft-attention, and progressive learning strategy. We find that our PNS-Net works well under different settings, making it a promising solution to the VPS task.

2.2. Framework Overview


Figure 1: Overview of the proposed PNS-Net, including the normalized self-attention block (see Β§ 2.1) with a stacked (Γ—R) learning strategy. See Β§ 2 in the paper for details.

2.3. Qualitative Results


Figure 2: Qualitative Results.

3. Proposed Baseline

3.1. Training/Testing

The training and testing experiments are conducted using PyTorch with a single GeForce RTX 2080 GPU of 8 GB Memory.

  1. Configuring your environment (Prerequisites):

    Note that PNS-Net is only tested on Ubuntu OS with the following environments. It may work on other operating systems as well but we do not guarantee that it will.

    • Creating a virtual environment in terminal:

    conda create -n PNSNet python=3.6.

    • Installing necessary packages PyTorch 1.1:
    conda create -n PNSNet python=3.6
    conda activate PNSNet
    conda install pytorch=1.1.0 torchvision -c pytorch
    pip install tensorboardX tqdm Pillow==6.2.2
    pip install git+https://github.com/pytorch/[email protected]
    • Our core design is built on CUDA OP with torchlib. Please ensure the base CUDA toolkit version is 10.x (not at conda env), and then build the NS Block:
    cd ./lib/PNS
    python setup.py build develop
  2. Downloading necessary data:

  3. Training Configuration:

    • First, run python MyTrain_Pretrain.py in the terminal for pretraining, and then, run python MyTrain_finetune.py for finetuning.

    • Just enjoy it! Finish it and the snapshot would save in ./snapshot/PNS-Net/*.

  4. Testing Configuration:

    • After you download all the pre-trained model and testing dataset, just run MyTest_finetune.py to generate the final prediction map in ./res.

    • Just enjoy it!

    • The prediction results of all competitors and our PNS-Net can be found at Google Drive (7MB).

3.2 Evaluating your trained model:

One-key evaluation is written in MATLAB code (link), please follow this the instructions in ./eval/main_VPS.m and just run it to generate the evaluation results in ./eval-Result/.

4. Citation

Please cite our paper if you find the work useful:

@inproceedings{ji2021pnsnet,
  title={Progressively Normalized Self-Attention Network for Video Polyp Segmentation},
  author={Ji, Ge-Peng and Chou, Yu-Cheng and Fan, Deng-Ping and Chen, Geng and Jha, Debesh and Fu, Huazhu and Shao, Ling},
  booktitle={MICCAI},
  year={2021}
}

5. TODO LIST

If you want to improve the usability or any piece of advice, please feel free to contact me directly (E-mail).

  • Support NVIDIA APEX training.

  • Support different backbones ( VGGNet, ResNet, ResNeXt, iResNet, and ResNeSt etc.)

  • Support distributed training.

  • Support lightweight architecture and real-time inference, like MobileNet, SqueezeNet.

  • Support distributed training

  • Add more comprehensive competitors.

6. FAQ

  1. If the image cannot be loaded on the page (mostly in the domestic network situations).

    Solution Link


7. Acknowledgements

This code is built on SINetV2 (PyTorch) and PyramidCSA (PyTorch). We thank the authors for sharing the codes.

⬆ back to top

Owner
Ge-Peng Ji (Daniel)
Computer Vision & Medical Imaging
Ge-Peng Ji (Daniel)
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022