[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

Related tags

Deep LearningCoRe
Overview

CoRe

Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou

This is the PyTorch implementation for ICCV paper Group-aware Contrastive Regression for Action Quality Assessment arXiv.

We present a new Contrastive Regression (CoRe) framework to learn the relative scores by pair-wise comparison, which highlights the differences between videos and guides the models to learn the key hints for action quality assessment.

intro

Pretrained Model

Usage

Requirement

  • Python >= 3.6
  • Pytorch >= 1.4.0
  • torchvision >= 0.4.1
  • torch_videovision
pip install git+https://github.com/hassony2/torch_videovision

Download initial I3D

We use the Kinetics pretrained I3D model from the reposity kinetics_i3d_pytorch

Dataset Preparation

MTL-AQA

  • Please download the dataset from the repository MTL-AQA. The data structure should be:
$DATASET_ROOT
├── MTL-AQA/
    ├── new
        ├── new_total_frames_256s
            ├── 01
            ...
            └── 09
    ├── info
        ├── final_annotations_dict_with_dive_number
        ├── test_split_0.pkl
        └── train_split_0.pkl
    └── model_rgb.pth

The processed annotations are already provided in this repo. You can download the prepared dataset [BaiduYun](code:smff). Download and unzip the four zip files under MTL-AQA/, then follow the structure. If you want to prepare the data by yourself, please see MTL_helper for some helps. We provide codes for processing the data from an online video to the frames data.

AQA-7

  • Download AQA-7 Dataset:
mkdir AQA-Seven & cd AQA-Seven
wget http://rtis.oit.unlv.edu/datasets/AQA-7.zip
unzip AQA-7.zip

The data structure should be:

$DATASET_ROOT
├── Seven/
    ├── diving-out
        ├── 001
            ├── img_00001.jpg
            ...
        ...
        └── 370
    ├── gym_vault-out
        ├── 001
            ├── img_00001.jpg
            ...
    ...

    └── Split_4
        ├── split_4_test_list.mat
        └── split_4_train_list.mat

You can download he prepared dataset [BaiduYun](code:65rl). Unzip the file under Seven/

JIGSAWS

  • Please download the dataset from JIASAWS. You are required to complete a form before you use this dataset for academic research.

The training and test code for JIGSAWS is on the way.

Training and Evaluation

To train a CoRe model:

bash ./scripts/train.sh <GPUIDS>  <MTL/Seven> <exp_name>  [--resume] 

For example,

# train a model on MTL
bash ./scripts/train.sh 0,1 MTL try 

# train a model on Seven
bash ./scripts/train.sh 0,1 Seven try --Seven_cls 1

To evaluate a pretrained model:

bash ./scripts/test.sh <GPUIDS>  <MTL/Seven> <exp_name>  --ckpts <path> [--Seven_cls <int>]

For example,

# test a model on MTL
bash ./scripts/test.sh 0 MTL try --ckpts ./MTL_CoRe.pth

# test a model on Seven
bash ./scripts/test.sh 0 Seven try --Seven_cls 1 --ckpts ./Seven_CoRe_1.pth

Visualizatin Results

vis

Citation

If you find our work useful in your research, please consider citing:

@misc{yu2021groupaware,
      title={Group-aware Contrastive Regression for Action Quality Assessment}, 
      author={Xumin Yu and Yongming Rao and Wenliang Zhao and Jiwen Lu and Jie Zhou},
      year={2021},
      eprint={2108.07797},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Xumin Yu
Xumin Yu
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。

MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.

发送小信号 180 Dec 17, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement

Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)

19 Nov 24, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023