[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

Related tags

Deep LearningCoRe
Overview

CoRe

Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou

This is the PyTorch implementation for ICCV paper Group-aware Contrastive Regression for Action Quality Assessment arXiv.

We present a new Contrastive Regression (CoRe) framework to learn the relative scores by pair-wise comparison, which highlights the differences between videos and guides the models to learn the key hints for action quality assessment.

intro

Pretrained Model

Usage

Requirement

  • Python >= 3.6
  • Pytorch >= 1.4.0
  • torchvision >= 0.4.1
  • torch_videovision
pip install git+https://github.com/hassony2/torch_videovision

Download initial I3D

We use the Kinetics pretrained I3D model from the reposity kinetics_i3d_pytorch

Dataset Preparation

MTL-AQA

  • Please download the dataset from the repository MTL-AQA. The data structure should be:
$DATASET_ROOT
├── MTL-AQA/
    ├── new
        ├── new_total_frames_256s
            ├── 01
            ...
            └── 09
    ├── info
        ├── final_annotations_dict_with_dive_number
        ├── test_split_0.pkl
        └── train_split_0.pkl
    └── model_rgb.pth

The processed annotations are already provided in this repo. You can download the prepared dataset [BaiduYun](code:smff). Download and unzip the four zip files under MTL-AQA/, then follow the structure. If you want to prepare the data by yourself, please see MTL_helper for some helps. We provide codes for processing the data from an online video to the frames data.

AQA-7

  • Download AQA-7 Dataset:
mkdir AQA-Seven & cd AQA-Seven
wget http://rtis.oit.unlv.edu/datasets/AQA-7.zip
unzip AQA-7.zip

The data structure should be:

$DATASET_ROOT
├── Seven/
    ├── diving-out
        ├── 001
            ├── img_00001.jpg
            ...
        ...
        └── 370
    ├── gym_vault-out
        ├── 001
            ├── img_00001.jpg
            ...
    ...

    └── Split_4
        ├── split_4_test_list.mat
        └── split_4_train_list.mat

You can download he prepared dataset [BaiduYun](code:65rl). Unzip the file under Seven/

JIGSAWS

  • Please download the dataset from JIASAWS. You are required to complete a form before you use this dataset for academic research.

The training and test code for JIGSAWS is on the way.

Training and Evaluation

To train a CoRe model:

bash ./scripts/train.sh <GPUIDS>  <MTL/Seven> <exp_name>  [--resume] 

For example,

# train a model on MTL
bash ./scripts/train.sh 0,1 MTL try 

# train a model on Seven
bash ./scripts/train.sh 0,1 Seven try --Seven_cls 1

To evaluate a pretrained model:

bash ./scripts/test.sh <GPUIDS>  <MTL/Seven> <exp_name>  --ckpts <path> [--Seven_cls <int>]

For example,

# test a model on MTL
bash ./scripts/test.sh 0 MTL try --ckpts ./MTL_CoRe.pth

# test a model on Seven
bash ./scripts/test.sh 0 Seven try --Seven_cls 1 --ckpts ./Seven_CoRe_1.pth

Visualizatin Results

vis

Citation

If you find our work useful in your research, please consider citing:

@misc{yu2021groupaware,
      title={Group-aware Contrastive Regression for Action Quality Assessment}, 
      author={Xumin Yu and Yongming Rao and Wenliang Zhao and Jiwen Lu and Jie Zhou},
      year={2021},
      eprint={2108.07797},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Xumin Yu
Xumin Yu
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

86 Dec 25, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023