[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

Related tags

Deep LearningCoRe
Overview

CoRe

Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou

This is the PyTorch implementation for ICCV paper Group-aware Contrastive Regression for Action Quality Assessment arXiv.

We present a new Contrastive Regression (CoRe) framework to learn the relative scores by pair-wise comparison, which highlights the differences between videos and guides the models to learn the key hints for action quality assessment.

intro

Pretrained Model

Usage

Requirement

  • Python >= 3.6
  • Pytorch >= 1.4.0
  • torchvision >= 0.4.1
  • torch_videovision
pip install git+https://github.com/hassony2/torch_videovision

Download initial I3D

We use the Kinetics pretrained I3D model from the reposity kinetics_i3d_pytorch

Dataset Preparation

MTL-AQA

  • Please download the dataset from the repository MTL-AQA. The data structure should be:
$DATASET_ROOT
├── MTL-AQA/
    ├── new
        ├── new_total_frames_256s
            ├── 01
            ...
            └── 09
    ├── info
        ├── final_annotations_dict_with_dive_number
        ├── test_split_0.pkl
        └── train_split_0.pkl
    └── model_rgb.pth

The processed annotations are already provided in this repo. You can download the prepared dataset [BaiduYun](code:smff). Download and unzip the four zip files under MTL-AQA/, then follow the structure. If you want to prepare the data by yourself, please see MTL_helper for some helps. We provide codes for processing the data from an online video to the frames data.

AQA-7

  • Download AQA-7 Dataset:
mkdir AQA-Seven & cd AQA-Seven
wget http://rtis.oit.unlv.edu/datasets/AQA-7.zip
unzip AQA-7.zip

The data structure should be:

$DATASET_ROOT
├── Seven/
    ├── diving-out
        ├── 001
            ├── img_00001.jpg
            ...
        ...
        └── 370
    ├── gym_vault-out
        ├── 001
            ├── img_00001.jpg
            ...
    ...

    └── Split_4
        ├── split_4_test_list.mat
        └── split_4_train_list.mat

You can download he prepared dataset [BaiduYun](code:65rl). Unzip the file under Seven/

JIGSAWS

  • Please download the dataset from JIASAWS. You are required to complete a form before you use this dataset for academic research.

The training and test code for JIGSAWS is on the way.

Training and Evaluation

To train a CoRe model:

bash ./scripts/train.sh <GPUIDS>  <MTL/Seven> <exp_name>  [--resume] 

For example,

# train a model on MTL
bash ./scripts/train.sh 0,1 MTL try 

# train a model on Seven
bash ./scripts/train.sh 0,1 Seven try --Seven_cls 1

To evaluate a pretrained model:

bash ./scripts/test.sh <GPUIDS>  <MTL/Seven> <exp_name>  --ckpts <path> [--Seven_cls <int>]

For example,

# test a model on MTL
bash ./scripts/test.sh 0 MTL try --ckpts ./MTL_CoRe.pth

# test a model on Seven
bash ./scripts/test.sh 0 Seven try --Seven_cls 1 --ckpts ./Seven_CoRe_1.pth

Visualizatin Results

vis

Citation

If you find our work useful in your research, please consider citing:

@misc{yu2021groupaware,
      title={Group-aware Contrastive Regression for Action Quality Assessment}, 
      author={Xumin Yu and Yongming Rao and Wenliang Zhao and Jiwen Lu and Jie Zhou},
      year={2021},
      eprint={2108.07797},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Xumin Yu
Xumin Yu
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022