[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

Related tags

Deep LearningCoRe
Overview

CoRe

Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou

This is the PyTorch implementation for ICCV paper Group-aware Contrastive Regression for Action Quality Assessment arXiv.

We present a new Contrastive Regression (CoRe) framework to learn the relative scores by pair-wise comparison, which highlights the differences between videos and guides the models to learn the key hints for action quality assessment.

intro

Pretrained Model

Usage

Requirement

  • Python >= 3.6
  • Pytorch >= 1.4.0
  • torchvision >= 0.4.1
  • torch_videovision
pip install git+https://github.com/hassony2/torch_videovision

Download initial I3D

We use the Kinetics pretrained I3D model from the reposity kinetics_i3d_pytorch

Dataset Preparation

MTL-AQA

  • Please download the dataset from the repository MTL-AQA. The data structure should be:
$DATASET_ROOT
├── MTL-AQA/
    ├── new
        ├── new_total_frames_256s
            ├── 01
            ...
            └── 09
    ├── info
        ├── final_annotations_dict_with_dive_number
        ├── test_split_0.pkl
        └── train_split_0.pkl
    └── model_rgb.pth

The processed annotations are already provided in this repo. You can download the prepared dataset [BaiduYun](code:smff). Download and unzip the four zip files under MTL-AQA/, then follow the structure. If you want to prepare the data by yourself, please see MTL_helper for some helps. We provide codes for processing the data from an online video to the frames data.

AQA-7

  • Download AQA-7 Dataset:
mkdir AQA-Seven & cd AQA-Seven
wget http://rtis.oit.unlv.edu/datasets/AQA-7.zip
unzip AQA-7.zip

The data structure should be:

$DATASET_ROOT
├── Seven/
    ├── diving-out
        ├── 001
            ├── img_00001.jpg
            ...
        ...
        └── 370
    ├── gym_vault-out
        ├── 001
            ├── img_00001.jpg
            ...
    ...

    └── Split_4
        ├── split_4_test_list.mat
        └── split_4_train_list.mat

You can download he prepared dataset [BaiduYun](code:65rl). Unzip the file under Seven/

JIGSAWS

  • Please download the dataset from JIASAWS. You are required to complete a form before you use this dataset for academic research.

The training and test code for JIGSAWS is on the way.

Training and Evaluation

To train a CoRe model:

bash ./scripts/train.sh <GPUIDS>  <MTL/Seven> <exp_name>  [--resume] 

For example,

# train a model on MTL
bash ./scripts/train.sh 0,1 MTL try 

# train a model on Seven
bash ./scripts/train.sh 0,1 Seven try --Seven_cls 1

To evaluate a pretrained model:

bash ./scripts/test.sh <GPUIDS>  <MTL/Seven> <exp_name>  --ckpts <path> [--Seven_cls <int>]

For example,

# test a model on MTL
bash ./scripts/test.sh 0 MTL try --ckpts ./MTL_CoRe.pth

# test a model on Seven
bash ./scripts/test.sh 0 Seven try --Seven_cls 1 --ckpts ./Seven_CoRe_1.pth

Visualizatin Results

vis

Citation

If you find our work useful in your research, please consider citing:

@misc{yu2021groupaware,
      title={Group-aware Contrastive Regression for Action Quality Assessment}, 
      author={Xumin Yu and Yongming Rao and Wenliang Zhao and Jiwen Lu and Jie Zhou},
      year={2021},
      eprint={2108.07797},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Xumin Yu
Xumin Yu
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
OBBDetection: an oriented object detection toolbox modified from MMdetection

OBBDetection note: If you have questions or good suggestions, feel free to propose issues and contact me. introduction OBBDetection is an oriented obj

MIXIAOXIN_HO 3 Nov 11, 2022