Benchmarks for the Optimal Power Flow Problem

Overview

Power Grid Lib - Optimal Power Flow

This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emerging Power System Algorithms and is designed to evaluate a well established version of the the AC Optimal Power Flow problem. This introductory video and detailed report present the motivations and goals of this benchmark library. In particular, these cases are designed for benchmarking algorithms that solve the following Non-Convex Nonlinear Program,

  The Mathematical Model of the Optimal Power Flow Problem  

A detailed description of this mathematical model is available here. All of the cases files are curated in the MATPOWER data format. Open-source reference implementations are available in MATPOWER and PowerModels.jl and baseline results are reported in BASELINE.md.

Problem Variants

These cases may also be useful for benchmarking the following variants of the Optimal Power Flow problem,

  • DC Optimal Power Flow
  • AC Optimal Transmission Switching
  • DC Optimal Transmission Switching

That said, these cases are curated with the AC Optimal Power Flow problem in mind. Application to other domains and problem variants should be done with discretion.

Case File Overview

A forthcoming technical report will detail the sources, motivations, and procedures for curating these case files.

In this repository the network data files are organized into the following three broad groups:

  • /*.m - base case benchmarks as originally specified
  • /api/*.m - heavily loaded test cases (i.e. binding thermal limit constraints)
  • /sad/*.m - small phase angle difference cases (i.e. binding phase angle difference constraints)

Contributions

All case files are provided under a Creative Commons Attribution License, which allows anyone to share or adapt these cases as long as they give appropriate credit to the orginal author, provide a link to the license, and indicate if changes were made.

Community-based recommendations and contributions are welcome and encouraged in all PGLib repositories. Please feel free to submit comments and questions in the issue tracker. Corrections and new network contributions are welcome via pull requests. All data contributions are subject to a quality assurance review by the repository curator(s).

Citation Guidelines

This repository is not static. Consequently, it is critically important to indicate the version number when referencing this repository in scholarly work.

Users of this these cases are encouraged to cite the original source documents that are indicated in the file headers and the achrive report.

Comments
  • DC Baselines, Constraints, and Inf

    DC Baselines, Constraints, and Inf

    Hello, I have some related questions about the DC OPF baselines.

    1. It seems that for many of the typical operating conditions, the DC approximation better minimizes the cost than the full AC solution. Is this expected? Does this factor in any constraint violations?

    2. In some of the small angle difference cases, the objective values for the DC approximation are listed as "Inf". Does that indicate a constraint violation?

    opened by ElPiloto 5
  • radial test cases

    radial test cases

    It seems none of the test cases in pglib-opf are radial? That makes it hard to use any of these benchmarks to use/extend them for models that require a consistent definition of upstream/downstream, e.g. as in [1] below.

    I recall that the NESTA archive had a /rad m file collection. Was there any discussion on including that in pglib-opf? What happened to it?

    [1] Dvorkin, V., Fioretto, F., Van Hentenryck, P., Kazempour, J., & Pinson, P. (2020). Differentially Private Optimal Power Flow for Distribution Grids, 1, 1–9. Retrieved from http://arxiv.org/abs/2004.03921

    opened by frederikgeth 5
  • Help In SDP-Relaxation method for solving OPF Problem

    Help In SDP-Relaxation method for solving OPF Problem

    Hello Sir, i came to know about you from your videos of Convex Relaxations in Youtube... Sir i need help from you, i am stuck in my project work....i am trying to find an optimze a system 3m9b for test....

    and i wrote the optimization problem like this.... for i=1:1 cvx_begin cvx_solver sedumi

    variables u(npv,1) variable W(2n,2n) symmetric summ=trace(YYreal(:,:,1)*W); for i=2:n summ=summ+trace(YYreal(:,:,i)*W); end for i=1:npv u(i,1)==trace(YYreal(:,:,i+npq)W);
    (This u contais the PV buses active power generation...(whose optimal value has to be found)) end minimize(w
    (sum(u)+trace(YYreal(:,:,n)*W)))

    subject to for i=1:npq (this are equality constraints "calculated active power=specified active power" for pv&pq buses) trace(YYreal(:,:,i)*W)-(Pg(i,1)-Pl(i,1))==0; trace(YYreal(:,:,i)*W)-(Pg(i,1)-Pl(i,1))==0; end for i=1:npv (this bounds i thought to apply after getting a local optimal solution from Newtons Method) trace(YYreal(:,:,i+npq)*W)+Pl(i+npq,1)>=-0.2 trace(YYreal(:,:,i+npq)*W)+Pl(i+npq,1)<=3 end

    for i=1:npq (this are equality constraints "calculated reactive power=specified reactive power" for only pq buses) trace(YYimag(:,:,i)*W)-(Qg(i,1)-Ql(i,1))==0; trace(YYimag(:,:,i)*W)-(Qg(i,1)-Ql(i,1))==0; end

    W==semidefinite(2*n); W>=0; cvx_end w=w+1 for i=1:npv Pg(i+npq,1)=trace(YYreal(:,:,i+npq)*W)+Pl(i+npq,1); end end

    Sir, in the paper it is "Zero Duality Gap In Optimal Power Flow" that rank of W matrix variable should come=1 when the duality gap is "0". and for that we applied weight method.(w is the weight)..

    Sir.. for some values of w i get solution as 'NAN'. and for some i get an optimal solution...but the 'W matrix' never comes of rank 1...

    i dont know where i am going wrong...but please help me with this....

    opened by 12146 1
  • Line limits units (`rateA`)

    Line limits units (`rateA`)

    Hi, first, thanks for your work aggregating and building this library!

    I'm trying to use the 1354pegase case and am implementing my own simplified opf model where I want to impose line current constraints for line l = (i,j) according to

    (|y_ij| |V_i - V_j|)^2 <= rhs
    

    for V_i, V_j the complex voltages at buses i and j and |y_ij| is the magnitude of the (i,j) element of the admittance matrix. (Btw, I'm ignoring tap adjustments now...)

    However, I'm not sure what the units of the rhs should be from the pglib case. According to Table V of the report (https://arxiv.org/abs/1908.02788), it seems that rateA is a thermal limit that was determined by the TL-UB method from Section V.B.2. Does this mean that the rateA is already normalized by baseMVA and given in p.u. form? Or should I divide rateA by 100 to get the p.u. (and then square it to set the value of the rhs).

    Thanks!

    opened by jacob-roth 1
  • Tranformer Parameter Checks

    Tranformer Parameter Checks

    In some cases all tap settings are 1.0, I check should be made so that this only occurs when the value is not 1.0 or the branch is connecting two voltage levels.

    opened by ccoffrin 1
  • Inverted Generator Bounds

    Inverted Generator Bounds

    Some inactive generators have infeasible active power bounds (i.e. pmax < pmin). Resolve this by ensuring,

    pmin = min(pmin,pmax)
    pmax = min(pmin,pmax)
    

    in all generators.

    opened by ccoffrin 0
  • Generator LB higher than UB in 1888_rte__api

    Generator LB higher than UB in 1888_rte__api

    In pglib_opf_case1888_rte__api.m, the real power lower bound for the generator at bus 1689 (line 2,044 of the `.m' file) is 280.0, but the upper bound has been modified to be 64 (from 930 in the original case). Is this intentional? If so, what does it mean if the generator is turned on?

    Thank you for your help!

    opened by emma58 2
  • Error when solving case89_pegase__api and case240_pserc__api

    Error when solving case89_pegase__api and case240_pserc__api

    Hello,

    I got the following error when solving OPF for 2 test cases: case89_pegase__api and case240_pserc__api with the MATPOWER function runopf. It seems that there is a problem when generator bound Pmax is 0.

    Error using makeAvl (line 52) makeAvl: either Qmin or Qmax must be equal to zero for each dispatchable load.

    Error in opf_setup (line 171) [Avl, lvl, uvl] = makeAvl(baseMVA, gen);

    Error in opf (line 198) om = opf_setup(mpc, mpopt);

    Error in runopf (line 75) [r, success] = opf(casedata, mpopt);

    Best regards,

    Christian

    opened by cbingane 7
  • Add 68-Bus System

    Add 68-Bus System

    Explore the possibility of including a network derived from the 68-Bus, 16-Machine, 5-Area Dynamic Test System.

    Related Links:

    • http://sites.ieee.org/pes-psdp/benchmark-systems-2/
    • https://electricgrids.engr.tamu.edu/electric-grid-test-cases/
    • http://icseg.iti.illinois.edu/new-england-68-bus-test-system/
    • http://sites.ieee.org/pes-resource-center/files/2015/08/PES_TR18_Benchmark-Systems-for-Small-Signal-Stability-Analysis-and-Control.pdf
    • http://www.sel.eesc.usp.br/ieee/NETS68/New_England_New_York_68_Bus_System_study_report.pdf
    opened by ccoffrin 0
Releases(v21.07)
Owner
A Library of IEEE PES Power Grid Benchmarks
A Library of IEEE PES Power Grid Benchmarks
Reimplementation of the paper "Attention, Learn to Solve Routing Problems!" in jax/flax.

JAX + Attention Learn To Solve Routing Problems Reinplementation of the paper Attention, Learn to Solve Routing Problems! using Jax and Flax. Fully su

Gabriela Surita 7 Dec 01, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022