[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

Overview

[Project] [PDF] Hugging Face Spaces

This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets"

by Axel Sauer, Katja Schwarz, and Andreas Geiger.

If you find our code or paper useful, please cite

@InProceedings{Sauer2021ARXIV,
  author    = {Axel Sauer and Katja Schwarz and Andreas Geiger},
  title     = {StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets},
  journal   = {arXiv.org},
  volume    = {abs/2201.00273},
  year      = {2022},
  url       = {https://arxiv.org/abs/2201.00273},
}
Rank on Papers With Code  
PWC PWC
PWC PWC
PWC PWC
PWC PWC
PWC PWC

Related Projects

  • Projected GANs Converge Faster (NeurIPS'21)  -  Official Repo  -  Projected GAN Quickstart
  • StyleGAN-XL + CLIP (Implemented by CasualGANPapers)  -  StyleGAN-XL + CLIP
  • StyleGAN-XL + CLIP (Modified by Katherine Crowson to optimize in W+ space)  -  StyleGAN-XL + CLIP

ToDos

  • Initial code release
  • Add pretrained models (ImageNet{16,32,64,128,256,512,1024}, FFHQ{256,512,1024}, Pokemon{256,512,1024})
  • Add StyleMC for editing
  • Add PTI for inversion

Requirements

  • 64-bit Python 3.8 and PyTorch 1.9.0 (or later). See https://pytorch.org for PyTorch install instructions.
  • CUDA toolkit 11.1 or later.
  • GCC 7 or later compilers. The recommended GCC version depends on your CUDA version; see for example, CUDA 11.4 system requirements.
  • If you run into problems when setting up the custom CUDA kernels, we refer to the Troubleshooting docs of the original StyleGAN3 repo and the following issues: #23.
  • Windows user struggling installing the env might find #10 helpful.
  • Use the following commands with Miniconda3 to create and activate your PG Python environment:
    • conda env create -f environment.yml
    • conda activate sgxl

Data Preparation

For a quick start, you can download the few-shot datasets provided by the authors of FastGAN. You can download them here. To prepare the dataset at the respective resolution, run

python dataset_tool.py --source=./data/pokemon --dest=./data/pokemon256.zip \
  --resolution=256x256 --transform=center-crop

You need to follow our progressive growing scheme to get the best results. Therefore, you should prepare separate zips for each training resolution. You can get the datasets we used in our paper at their respective websites (FFHQ, ImageNet).

Training

For progressive growing, we train a stem on low resolution, e.g., 162 pixels. When the stem is finished, i.e., FID is saturating, you can start training the upper stages; we refer to these as superresolution stages.

Training the stem

Training StyleGAN-XL on Pokemon using 8 GPUs:

python train.py --outdir=./training-runs/pokemon --cfg=stylegan3-t --data=./data/pokemon16.zip \
    --gpus=8 --batch=64 --mirror=1 --snap 10 --batch-gpu 8 --kimg 10000 --syn_layers 10

--batch specifies the overall batch size, --batch-gpu specifies the batch size per GPU. The training loop will automatically accumulate gradients if you use fewer GPUs until the overall batch size is reached.

Samples and metrics are saved in outdir. If you don't want to track metrics, set --metrics=none. You can inspect fid50k_full.json or run tensorboard in training-runs/ to monitor the training progress.

For a class-conditional dataset (ImageNet, CIFAR-10), add the flag --cond True . The dataset needs to contain the class labels; see the StyleGAN2-ADA repo on how to prepare class-conditional datasets.

Training the super-resolution stages

Continuing with pretrained stem:

python train.py --outdir=./training-runs/pokemon --cfg=stylegan3-t --data=./data/pokemon32.zip \
  --gpus=8 --batch=64 --mirror=1 --snap 10 --batch-gpu 8 --kimg 10000 --syn_layers 10 \
  --superres --up_factor 2 --head_layers 7 \
  --path_stem training-runs/pokemon/00000-stylegan3-t-pokemon16-gpus8-batch64/best_model.pkl

--up_factor allows to train several stages at once, i.e., with --up_factor=4 and a 162 stem you can directly train at resolution 642.

If you have enough compute, a good tactic is to train several stages in parallel and then restart the superresolution stage training once in a while. The current stage will then reload its previous stem's best_model.pkl. Performance can sometimes drop at first because of domain shift, but the superresolution stage quickly recovers and improves further.

Training recommendations for datasets other than ImageNet

The default settings are tuned for ImageNet. For smaller datasets (<50k images) or well-curated datasets (FFHQ), you can significantly decrease the model size enabling much faster training. Recommended settings are: --cbase 128 --cmax 128 --syn_layers 4 and for superresolution stages --head_layers 4.

Suppose you want to train as few stages as possible. We recommend training a 32x32 or 64x64 stem, then directly scaling to the final resolution (as described above, you must adjust --up_factor accordingly). However, generally, progressive growing yields better results faster as the throughput is much higher at lower resolutions. This can be seen in this figure by Karras et al., 2017:

Generating Samples & Interpolations

To generate samples and interpolation videos, run

python gen_images.py --outdir=out --trunc=0.7 --seeds=10-15 --batch-sz 1 \
  --network=https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/pokemon256.pkl

and

python gen_video.py --output=lerp.mp4 --trunc=0.7 --seeds=0-31 --grid=4x2 \
  --network=https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/pokemon256.pkl

For class-conditional models, you can pass the class index via --class, a index-to-label dictionary for Imagenet can be found here. For interpolation between classes, provide, e.g., --cls=0-31 to gen_video.py. The list of classes has to be the same length as --seeds.

To generate a conditional sample sheet, run

python gen_class_samplesheet.py --outdir=sample_sheets --trunc=1.0 \
  --network=https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet128.pkl \
  --samples-per-class 4 --classes 0-32 --grid-width 32

For ImageNet models, we enable multi-modal truncation (proposed by Self-Distilled GAN). We generated 600k find 10k cluster centroids via k-means. For a given samples, multi-modal truncation finds the closest centroids and interpolates towards it. To switch from uni-model to multi-modal truncation, pass

--centroids-path=https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet_centroids.npy

No Truncation Uni-Modal Truncation Multi-Modal Truncation

Image Editing

To use our reimplementation of StyleMC, and generate the example above, run

python run_stylemc.py --outdir=stylemc_out \
  --text-prompt "a chimpanzee | laughter | happyness| happy chimpanzee | happy monkey | smile | grin" \
  --seeds 0-256 --class-idx 367 --layers 10-30 --edit-strength 0.75 --init-seed 49 \
  --network=https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet128.pkl \
  --bigger-network https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet1024.pkl

Recommended workflow:

  • Sample images via gen_images.py.
  • Pick a sample and use it as the inital image for stylemc.py by providing --init-seed and --class-idx.
  • Find a direction in style space via --text-prompt.
  • Finetune --edit-strength, --layers, and amount of --seeds.
  • Once you found a good setting, provide a larger model via --bigger-network. The script still optimizes the direction for the smaller model, but uses the bigger model for the final output.

Pretrained Models

We provide the following pretrained models (pass the url as PATH_TO_NETWORK_PKL):

Dataset Res FID PATH
ImageNet 162 0.73 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet16.pkl
ImageNet 322 1.11 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet32.pkl
ImageNet 642 1.52 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet64.pkl
ImageNet 1282 1.77 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet128.pkl
ImageNet 2562 2.26 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet256.pkl
ImageNet 5122 2.42 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet512.pkl
ImageNet 10242 2.51 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet1024.pkl
CIFAR10 322 1.85 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/cifar10.pkl
FFHQ 2562 2.19 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/ffhq256.pkl
FFHQ 5122 2.23 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/ffhq512.pkl
FFHQ 10242 2.02 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/ffhq1024.pkl
Pokemon 2562 23.97 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/pokemon256.pkl
Pokemon 5122 23.82 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/pokemon512.pkl
Pokemon 10242 25.47 https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/pokemon1024.pkl

Quality Metrics

Per default, train.py tracks FID50k during training. To calculate metrics for a specific network snapshot, run

python calc_metrics.py --metrics=fid50k_full --network=PATH_TO_NETWORK_PKL

To see the available metrics, run

python calc_metrics.py --help

We provide precomputed FID statistics for all pretrained models:

wget https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/gan-metrics.zip
unzip gan-metrics.zip -d dnnlib/

Further Information

This repo builds on the codebase of StyleGAN3 and our previous project Projected GANs Converge Faster.

PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

Study-CSRNet-pytorch This is the PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

0 Mar 01, 2022