An implementation of the paper "A Neural Algorithm of Artistic Style"

Overview

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer

This is an implementation of the research paper "A Neural Algorithm of Artistic Style" written by Leon A. Gatys, Alexander S. Ecker, Matthias Bethge.

Inspiration

The mechanism acting behind perceiving artistic images through biological vision is still unclear among scientists across the world. There exists no proper artificial system that perfectly interprets our visual experiences while understanding art. The method proposed in this paper is a significant step towards explaining how the biological vision might work while perceiving fine art.


Introduction

To quote authors Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, "in light of the striking similarities between performance-optimised artificial neural networks and biological vision, our work offers a path forward to an algorithmic understanding of how humans create and perceive artistic imagery.

The idea of Neural Style Transfer is taking a white noise as an input image, changing the input in such a way that it resembles the content of the content image and the texture/artistic style of the style image to reproduce it as a new artistic stylized image.

We define two distances, one for the content that measures how different the content between the two images is, and one for style that measures how different the style between the two images is. The aim is to transform the white noise input such that the the content-distance and style-distance is minimized (with the content and style image respectively).

Given below are some results from the original implementation


Model Componenets

Our Model architecture follows:

  • We have one module defining two classes responsible for calculating the loss functions for both content and style images and one for applying normalization on the desired values.
  • We have a second module which has three methods under one class NST -
    • A method for image preprocessing.
    • Content and Style Model Representation - We used the feature space provided by the 16 convolutional and 5 pooling layers of the VGG-19 Network. The five style reconstructions were generated by matching the style representations on layer 'conv1_1', 'conv2_1', 'conv3_1', 'conv4_1' and 'conv5_1. The generated style was matched with the content representation on layer 'conv4_2' to transform our input white noise into an image that applied the artistic style from the style image to the content of the content image by minimizing the values for both content and style loss respectively.
    • A method for training - We made a third method that calls the above methods to take content and style inputs from the user, preprocesses it and runs the neural style transfer algorithm on a white noise input image for 300 iterations using the LBFGS as the optimization function to output the generated image that is a combination of the given content and style images.


Implementation Details

  • PIL images have values between 0 and 255, but when transformed into torch tensors, their values are converted to be between 0 and 1. The images need to be resized to have the same dimensions. Neural networks from the torch library are trained with tensor values ranging from 0 to 1. The image_loader() function takes content and style image paths and loads them, creates a white noise input image, and returns the three tensors.
  • The style_model_and_losses() function is responsible for calculating and returning the content and style losses, and adding the content loss and style loss layers immediately after the convolution layer they are detecting.
  • To quote the authors, "To generate the images that mix the content of a photograph with the style of a painting we jointly minimise the distance of a white noise image from the content representation of the photograph in one layer of the network and the style representation of the painting in a number of layers of the CNN". The run_nst() function performs the neural transfer. For each iteration of the networks, an updated input is fed into it and new losses are computed. The backward methods of each loss module is run to dynamicaly compute their gradients. The optimizer requires a “closure()” function, to re-evaluate the module and return the loss.

Note - Owing to computational power limitations, the content and style images are resized to 512x512 when using a GPU or 128x128 when on a CPU. It is advisable to use a GPU for training because Neural Atyle Transfer is computationally very expensive.

Usage Guidelines

  • Cloning the Repository:

      git clone https://github.com/srijarkoroy/ArtiStyle
    
  • Entering the directory:

      cd ArtiStyle
    
  • Setting up the Python Environment with dependencies:

      pip install -r requirements.txt
    
  • Running the file:

      python3 test.py
    

Note: Before running the test file please ensure that you mention a valid path to a content and style image and also set path='path to save the output image' if you want to save your image

Check out the demo notebook here.

Results from implementation

Content Image Style Image Output Image

Contributors

Owner
Srijarko Roy
AI Enthusiast!
Srijarko Roy
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022