An implementation of the paper "A Neural Algorithm of Artistic Style"

Overview

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer

This is an implementation of the research paper "A Neural Algorithm of Artistic Style" written by Leon A. Gatys, Alexander S. Ecker, Matthias Bethge.

Inspiration

The mechanism acting behind perceiving artistic images through biological vision is still unclear among scientists across the world. There exists no proper artificial system that perfectly interprets our visual experiences while understanding art. The method proposed in this paper is a significant step towards explaining how the biological vision might work while perceiving fine art.


Introduction

To quote authors Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, "in light of the striking similarities between performance-optimised artificial neural networks and biological vision, our work offers a path forward to an algorithmic understanding of how humans create and perceive artistic imagery.

The idea of Neural Style Transfer is taking a white noise as an input image, changing the input in such a way that it resembles the content of the content image and the texture/artistic style of the style image to reproduce it as a new artistic stylized image.

We define two distances, one for the content that measures how different the content between the two images is, and one for style that measures how different the style between the two images is. The aim is to transform the white noise input such that the the content-distance and style-distance is minimized (with the content and style image respectively).

Given below are some results from the original implementation


Model Componenets

Our Model architecture follows:

  • We have one module defining two classes responsible for calculating the loss functions for both content and style images and one for applying normalization on the desired values.
  • We have a second module which has three methods under one class NST -
    • A method for image preprocessing.
    • Content and Style Model Representation - We used the feature space provided by the 16 convolutional and 5 pooling layers of the VGG-19 Network. The five style reconstructions were generated by matching the style representations on layer 'conv1_1', 'conv2_1', 'conv3_1', 'conv4_1' and 'conv5_1. The generated style was matched with the content representation on layer 'conv4_2' to transform our input white noise into an image that applied the artistic style from the style image to the content of the content image by minimizing the values for both content and style loss respectively.
    • A method for training - We made a third method that calls the above methods to take content and style inputs from the user, preprocesses it and runs the neural style transfer algorithm on a white noise input image for 300 iterations using the LBFGS as the optimization function to output the generated image that is a combination of the given content and style images.


Implementation Details

  • PIL images have values between 0 and 255, but when transformed into torch tensors, their values are converted to be between 0 and 1. The images need to be resized to have the same dimensions. Neural networks from the torch library are trained with tensor values ranging from 0 to 1. The image_loader() function takes content and style image paths and loads them, creates a white noise input image, and returns the three tensors.
  • The style_model_and_losses() function is responsible for calculating and returning the content and style losses, and adding the content loss and style loss layers immediately after the convolution layer they are detecting.
  • To quote the authors, "To generate the images that mix the content of a photograph with the style of a painting we jointly minimise the distance of a white noise image from the content representation of the photograph in one layer of the network and the style representation of the painting in a number of layers of the CNN". The run_nst() function performs the neural transfer. For each iteration of the networks, an updated input is fed into it and new losses are computed. The backward methods of each loss module is run to dynamicaly compute their gradients. The optimizer requires a “closure()” function, to re-evaluate the module and return the loss.

Note - Owing to computational power limitations, the content and style images are resized to 512x512 when using a GPU or 128x128 when on a CPU. It is advisable to use a GPU for training because Neural Atyle Transfer is computationally very expensive.

Usage Guidelines

  • Cloning the Repository:

      git clone https://github.com/srijarkoroy/ArtiStyle
    
  • Entering the directory:

      cd ArtiStyle
    
  • Setting up the Python Environment with dependencies:

      pip install -r requirements.txt
    
  • Running the file:

      python3 test.py
    

Note: Before running the test file please ensure that you mention a valid path to a content and style image and also set path='path to save the output image' if you want to save your image

Check out the demo notebook here.

Results from implementation

Content Image Style Image Output Image

Contributors

Owner
Srijarko Roy
AI Enthusiast!
Srijarko Roy
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S

Justin Sun 12 Dec 27, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN Pytorch implementation Inception score evaluation StackGAN-v2-pytorch Tensorflow implementation for reproducing main results in the paper Sta

Han Zhang 1.8k Dec 21, 2022
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
Facebook Research 605 Jan 02, 2023
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022