PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

Overview

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering

Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Hariharan2

1 The University of Texas at Austin, 2 Cornell University

[paper] [supp] [project page]

This repository is the official implementation of PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering, CVPR 2021.

Contact: Jang Hyun Cho [email protected].

Please feel free to reach out for any questions or discussions!

Setup

Setting up for this project involves installing dependencies and preparing the datasets.

Installing dependencies

To install all the dependencies, please run the following:

conda env create -f env.yml

Preparing Dataset

Please download the trainset and the validset of COCO dataset as well as the annotations. Place the dataset as following:

/your/dataset/directory/
      └── coco/
            ├── images/
            │     ├── train2017/
            │     │       ├── xxxxxxxxx.jpg
            │     │       └── ...
            │     └── val2017/
            │             ├── xxxxxxxxx.jpg
            │             └── ...
            └── annotations/
                  ├── COCO_2017_train.json
                  └── COCO_2017_val.json

Then, create a symbolic link as following:

cd PiCIE
ln -s /your/dataset/directory/ datasets 

Similarly, setup a symbolic link for the save directory as following:

ln -s /your/save/directory/ results

Finally, move curated folder to datasets/coco/:

mv curated datasets/coco/

This will setup the dataset that contains the same set of images with IIC.

Running PiCIE

Below are training and testing commands to train PiCIE.

Training

Below line will run the training code with default setting in the background.

nohup ./sh_files/train_picie.sh > logs/picie_train.out & 

Below line will run the testing code with default setting in the background.

Testing

nohup ./sh_files/test_picie.sh > logs/picie_test.out &

Pretrained Models (To be updated soon)

We have pretrained PiCIE weights.

Method Dataset Pre-trained weight Train log
PiCIE COCO weight log
PiCIE Cityscapes weight log
MDC COCO weight log
MDC Cityscapes weight log

Visualization (To be updated soon)

We prepared a jupyter notebook for visualization.

Citation

If you find PiCIE useful in your research, please consider citing:

@inproceedings{Cho2021PiCIE,
  title = {PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering},
  author = {Jang Hyun Cho and  Utkarsh Mall and  Kavita Bala and  Bharath Hariharan},
  year = {2021},
  booktitle = {CVPR}
}

Acknowledgements

We thank Facebook AI Research for the open-soource library Faiss. Also, our implementation largely borrows from DeepCluster and DeeperCluster for clustering with Faiss.

TODO's

  • Dependency & dataset setup.
  • Clear up and add complete train & test codes.
  • Baseline MDC code.
  • Weights and logs.
  • Make visualization notebook easier to use + better colors.
Owner
Jang Hyun Cho
PhD student at UT Austin
Jang Hyun Cho
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022