Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Overview

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

License: GPL v3

Introduction

This repository includes codes and models of "Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection" paper. link: https://doi.org/10.1016/j.compbiomed.2020.104121

Dataset

First you should download the MHSMA dataset using:

git clone https://github.com/soroushj/mhsma-dataset.git

Usage

First of all,the configuration file should be setted.So open dmtl.txt or dtl.txt and set the setting you want.This files contains paramaters of the model that you are going to train.

  • dtl.txt have only one line and contains paramaters to train a DTL model.

  • dmtl.txt contains two lines:paramaters of stage 1 are kept in the first line of the file and paramaters of stage 2 are kept in the second line of the file.
    Some paramaters have an aray of three values that they keep the value of three labels.To set them,consider this sequence:[Acrosome,Vacoule,Head].

  • To train a DTL model,use the following commands and arguments:

python train.py -t dtl [-e epchos] [-label label]  [-model model] [-w file] 

Argumetns:

Argument Description
-t type of network(dtl or dmtl)
-e number of epochs
-label label(a,v or h)
-model pre-trained model
-w name of best weihgt file
--phase You can use it to choose stage in DMTL(1 or 2)
--second_model The base model for second stage of DMTL

1.Train

  • To choose a pre-trained model, you can use one of the following models:
model argument Description
vgg_19 VGG 19
vgg_16 VGG 16
resnet_50 Resnet 50
resnet_101 Resnet 101
resnet_502 Resnet 502
  • To train a DMTL model,use the following commands and arguments:
python train.py -t dmtl [--phase phase] [-e epchos] [-label label] [-model model] [-w file]

Also you can use your own pre-trained model by using address of your model instead of the paramaters been told in the table above.

Example:
python train.py -t dmtl --phase 1 -e 100 -label a -model C:\model.h5 -w w.h5

2.K Fold

  • To perform K Fold on a model,use "-k_fold True" argument.
python train.py -k_fold True [-t type] [-e epchos] [-label label] [-model model] [-w file]

3.Threshold Search

  • To find a good threshold for your model,use the following code:
python threshold.py [-t type] [-addr model address] [-l label]

Models

The CNN models that were introduced and evaluated in our research paper can be found in the v1.0 release of this repository.

You might also like...
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)

Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol

Multi-task yolov5 with detection and segmentation based on yolov5
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

Code for the ICML 2021 paper
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

A novel Engagement Detection with Multi-Task Training (ED-MTT) system
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Comments
  • a possible typo(bug)

    a possible typo(bug)

    Very interesting idea and complements!

    In LoadData.py, starting from line 150, ` if phase == 'search':

        return {
                "x_train": x_train_128,
                "y_train": y_train,
                "x_train_128": x_train_128,
                'x_val_128': x_valid_128,
                "x_val": x_valid_128,
                "y_val": y_valid,
                "x_test": x_test_128,
                "y_test": y_test
                }`
    

    here, I think that the first key-value pair should probably be "x_train": x_train instead of "x_train": x_train_128, which causes an error of shape mismatch during fit.

    opened by captainst 0
Releases(v1.0)
Owner
Amir Abbasi
Student at University of Guilan (Computer Engineering), Working on Computer Vision & Reinforcement Learning
Amir Abbasi
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

Tianyu Ding 95 Dec 04, 2022
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022