Efficient neural networks for analog audio effect modeling

Overview

micro-TCN

Efficient neural networks for audio effect modeling.

| Paper | Demo | Plugin |

Setup

Install the requirements.

python3 -m venv env/
source env/bin/activate
pip install -r requirements.txt

Then install auraloss.

pip install git+https://github.com/csteinmetz1/auraloss

Pre-trained models

You can download the pre-trained models here. Then unzip as below.

mkdir lightning_logs
mv models.zip lightning_logs/
cd lightning_logs/
unzip models.zip 

Use the compy.py script in order to process audio files. Below is an example of how to run the TCN-300-C pre-trained model on GPU. This will process all the files in the audio/ directory with the limit mode engaged and a peak reduction of 42.

python comp.py -i audio/ --limit 1 --peak_red 42 --gpu

If you want to hear the output of a different model, you can pass the --model_id flag. To view the available pre-trained models (once you have downloaded them) run the following.

python comp.py --list_models

Found 13 models in ./lightning_logs/bulk
1-uTCN-300__causal__4-10-13__fraction-0.01-bs32
10-LSTM-32__1-32__fraction-1.0-bs32
11-uTCN-300__causal__3-60-5__fraction-1.0-bs32
13-uTCN-300__noncausal__30-2-15__fraction-1.0-bs32
14-uTCN-324-16__noncausal__10-2-15__fraction-1.0-bs32
2-uTCN-100__causal__4-10-5__fraction-1.0-bs32
3-uTCN-300__causal__4-10-13__fraction-1.0-bs32
4-uTCN-1000__causal__5-10-5__fraction-1.0-bs32
5-uTCN-100__noncausal__4-10-5__fraction-1.0-bs32
6-uTCN-300__noncausal__4-10-13__fraction-1.0-bs32
7-uTCN-1000__noncausal__5-10-5__fraction-1.0-bs32
8-TCN-300__noncausal__10-2-15__fraction-1.0-bs32
9-uTCN-300__causal__4-10-13__fraction-0.1-bs32

We also provide versions of the pre-trained models that have been converted to TorchScript for use in C++ here.

Evaluation

You will first need to download the SignalTrain dataset (~20GB) as well as the pre-trained models above. With this, you can then run the same evaluation pipeline used for reporting the metrics in the paper. If you would like to do this on GPU, perform the following command.

python test.py \
--root_dir /path/to/SignalTrain_LA2A_Dataset_1.1 \
--half \
--preload \
--eval_subset test \
--save_dir test_audio \

In this case, not only will the metrics be printed to terminal, we will also save out all of the processed audio from the test set to disk in the test_audio/ directory. If you would like to run the tests across the entire dataset you can specific a different string after the --eval_subset flag, as either train, val, or full.

Training

If would like to re-train the models in the paper, you can run the training script which will train all the models one by one.

python train.py \ 
--root_dir /path/to/SignalTrain_LA2A_Dataset_1.1 \
--precision 16 \
--preload \
--gpus 1 \

Plugin

We provide plugin builds (AV/VST3) for macOS. You can also build the plugin for your platform. This will require the traced models, which you can download here. First, you will need download and extract libtorch. Check the PyTorch site to find the correct version.

wget https://download.pytorch.org/libtorch/cpu/libtorch-macos-1.7.1.zip
unzip libtorch-macos-1.7.1.zip

Now move this into the realtime/ directory .

mv libtorch realtime/

We provide a ncomp.jucer file and a CMakeLists.txt that was created using FRUT. You will likely need to compile and run FRUT on this .jucer file in order to create a valid CMakeLists.txt. To do so, follow the instructions on compiling FRUT. Then convert the .jucer file. You will have to update the paths here to reflect the location of FRUT.

cd realtime/plugin/
../../FRUT/prefix/FRUT/bin/Jucer2CMake reprojucer ncomp.jucer ../../FRUT/prefix/FRUT/cmake/Reprojucer.cmake

Now you can finally build the plugin using CMake with the build.sh script. BUT, you will have to first update the path to libtorch in the build.sh script.

rm -rf build
mkdir build
cd build
cmake .. -G Xcode -DCMAKE_PREFIX_PATH=/absolute/path/to/libtorch ..
cmake --build .

Citation

If you use any of this code in your work, please consider citing us.

    @article{steinmetz2021efficient,
            title={Efficient Neural Networks for Real-time Analog Audio Effect Modeling},
            author={Steinmetz, Christian J. and Reiss, Joshua D.},
            journal={arXiv:2102.06200},
            year={2021}}
Owner
Christian Steinmetz
Building tools for musicians and audio engineers (often with machine learning). PhD Student at Queen Mary University of London.
Christian Steinmetz
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Gengshan Yang 157 Nov 21, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

77 Jan 05, 2023