[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

Overview

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion

This repository is the official implementation of paper: "Unsupervised Point Cloud Pre-training via Occlusion Completion"

[Paper] [Project Page]

Intro

image

In this work, we train a completion model that learns how to reconstruct the occluded points, given the partial observations. In this way, our method learns a pre-trained encoder that can identify the visual constraints inherently embedded in real-world point clouds.

We call our method Occlusion Completion (OcCo). We demonstrate that OcCo learns representations that: improve generalization on downstream tasks over prior pre-training methods, transfer to different datasets, reduce training time, and improve labeled sample efficiency.

Citation

Our paper is preprinted on arxiv:

@inproceedings{OcCo,
	title = {Unsupervised Point Cloud Pre-Training via Occlusion Completion},
	author = {Hanchen Wang and Qi Liu and Xiangyu Yue and Joan Lasenby and Matthew J. Kusner},
	year = 2021,
	booktitle = {International Conference on Computer Vision, ICCV}
}

Usage

We provide codes in both PyTorch (1.3): OcCo_Torch and TensorFlow (1.13-1.15): OcCo_TF. We also provide with docker configuration docker. Our recommended development environment PyTorch + docker, the following descriptions are based on OcCo_Torch, we refer the readme in the OcCo_TF for the details of TensorFlow implementation.

1) Prerequisite

Docker

In the docker folder, we provide the build, configuration and launch scripts:

docker
| - Dockerfile_Torch  # configuration
| - build_docker_torch.sh  # scripts for building up from the docker images
| - launch_docker_torch.sh  # launch from the built image
| - .dockerignore  # ignore the log and data folder while building up 

which can be automatically set up as following:

# build up from docker images
cd OcCo_Torch/docker
sh build_docker_torch.sh

# launch the docker image, conduct completion/classification/segmentation experiments
cd OcCo_Torch/docker
sh launch_docker_torch.sh
Non-Docker Setup

Just go with pip install -r Requirements_Torch.txt with the PyTorch 1.3.0, CUDA 10.1, CUDNN 7 (otherwise you may encounter errors while building the C++ extension chamfer_distance for calculating the Chamfer Distance), my development environment besides docker is Ubuntu 16.04.6 LTS, gcc/g++ 5.4.0, cuda10.1, CUDNN 7.

2) Pre-Training via Occlusion Completion (OcCo)

Data Usage:

For the details in the data setup, please see data/readme.md.

Training Scripts:

We unify the training of all three models (PointNet, PCN and DGCNN) in train_completion.py as well as the bash templates, see bash_template/train_completion_template.sh for details:

#!/usr/bin/env bash

cd ../

# train pointnet-occo model on ModelNet, from scratch
python train_completion.py \
	--gpu 0,1 \
	--dataset modelnet \
	--model pointnet_occo \
	--log_dir modelnet_pointnet_vanilla ;

# train dgcnn-occo model on ShapeNet, from scratch
python train_completion.py \
	--gpu 0,1 \
	--batch_size 16 \
	--dataset shapenet \
	--model dgcnn_occo \
	--log_dir shapenet_dgcnn_vanilla ;
Pre-Trained Weights

We will provide the OcCo pre-trained models for all the three models here, you can use them for visualization of completing self-occluded point cloud, fine tuning on classification, scene semantic and object part segmentation tasks.

3) Sanity Check on Pre-Training

We use single channel values as well as the t-SNE for dimensionality reduction to visualize the learned object embeddings on objects from the ShapeNet10, while the encoders are pre-trained on the ModelNet40 dataset, see utils/TSNE_Visu.py for details.

We also train a Support Vector Machine (SVM) based on the learned embeddings object recognition. It is in train_svm.py. We also provide the bash template for this, see bash_template/train_svm_template.sh for details:

#!/usr/bin/env bash

cd ../

# fit a simple linear SVM on ModelNet40 with OcCo PCN
python train_svm.py \
	--gpu 0 \
	--model pcn_util \
	--dataset modelnet40 \
	--restore_path log/completion/modelnet_pcn_vanilla/checkpoints/best_model.pth ;

# grid search the best svm parameters with rbf kernel on ScanObjectNN(OBJ_BG) with OcCo DGCNN
python train_svm.py \
	--gpu 0 \
	--grid_search \
	--batch_size 8 \
	--model dgcnn_util \
	--dataset scanobjectnn \
	--bn \
	--restore_path log/completion/modelnet_dgcnn_vanilla/checkpoints/best_model.pth ;

4) Fine Tuning Task - Classification

Data Usage:

For the details in the data setup, please see data/readme.md.

Training/Testing Scripts:

We unify the training and testing of all three models (PointNet, PCN and DGCNN) in train_cls.py. We also provide the bash template for training each models from scratch, JigSaw/OcCo pre-trained checkpoints, see bash_template/train_cls_template.sh for details:

#!/usr/bin/env bash

cd ../

# training pointnet on ModelNet40, from scratch
python train_cls.py \
	--gpu 0 \
	--model pointnet_cls \
	--dataset modelnet40 \
	--log_dir modelnet40_pointnet_scratch ;

# fine tuning pcn on ScanNet10, using jigsaw pre-trained checkpoints
python train_cls.py \
	--gpu 0 \
	--model pcn_cls \
	--dataset scannet10 \
	--log_dir scannet10_pcn_jigsaw \
	--restore \
	--restore_path log/completion/modelnet_pcn_vanilla/checkpoints/best_model.pth ;

# fine tuning dgcnn on ScanObjectNN(OBJ_BG), using jigsaw pre-trained checkpoints
python train_cls.py \
	--gpu 0,1 \
	--epoch 250 \
	--use_sgd \
	--scheduler cos \
	--model dgcnn_cls \
	--dataset scanobjectnn \
	--bn \
	--log_dir scanobjectnn_dgcnn_occo \
	--restore \
	--restore_path log/completion/modelnet_dgcnn_vanilla/checkpoints/best_model.pth ;

# test pointnet on ModelNet40 from pre-trained checkpoints
python train_cls.py \
	--gpu 1 \
	--mode test \
	--model pointnet_cls \
	--dataset modelnet40 \
	--log_dir modelnet40_pointnet_scratch \
	--restore \
	--restore_path log/cls/modelnet40_pointnet_scratch/checkpoints/best_model.pth ;

5) Fine Tuning Task - Semantic Segmentation

Data Usage:

For the details in the data setup, please see data/readme.md.

Training/Testing Scripts:

We unify the training and testing of all three models (PointNet, PCN and DGCNN) in train_semseg.py. We also provide the bash template for training each models from scratch, JigSaw/OcCo pre-trained checkpoints, see bash_template/train_semseg_template.sh for details:

#!/usr/bin/env bash

cd ../

# train pointnet_semseg on 6-fold cv of S3DIS, from scratch
for area in $(seq 1 1 6)
do
python train_semseg.py \
	--gpu 0,1 \
	--model pointnet_semseg \
	--bn_decay \
	--xavier_init \
	--test_area ${area} \
	--scheduler step \
	--log_dir pointnet_area${area}_scratch ;
done

# fine tune pcn_semseg on 6-fold cv of S3DIS, using jigsaw pre-trained weights
for area in $(seq 1 1 6)
do
python train_semseg.py \
	--gpu 0,1 \
	--model pcn_semseg \
	--bn_decay \
	--test_area ${area} \
	--log_dir pcn_area${area}_jigsaw \
	--restore \
	--restore_path log/jigsaw/modelnet_pcn_vanilla/checkpoints/best_model.pth ;
done

# fine tune dgcnn_semseg on 6-fold cv of S3DIS, using occo pre-trained weights
for area in $(seq 1 1 6)
do
python train_semseg.py \
	--gpu 0,1 \
	--test_area ${area} \
	--optimizer sgd \
	--scheduler cos \
	--model dgcnn_semseg \
	--log_dir dgcnn_area${area}_occo \
	--restore \
	--restore_path log/completion/modelnet_dgcnn_vanilla/checkpoints/best_model.pth ;
done

# test pointnet_semseg on 6-fold cv of S3DIS, from saved checkpoints
for area in $(seq 1 1 6)
do
python train_semseg.py \
	--gpu 0,1 \
	--mode test \
	--model pointnet_semseg \
	--test_area ${area} \
	--scheduler step \
	--log_dir pointnet_area${area}_scratch \
	--restore \
	--restore_path log/semseg/pointnet_area${area}_scratch/checkpoints/best_model.pth ;
done
Visualization:

We recommended using relevant code snippets in RandLA-Net for visualization.

6) Fine Tuning Task - Part Segmentation

Data Usage:

For the details in the data setup, please see data/readme.md.

Training/Testing Scripts:

We unify the training and testing of all three models (PointNet, PCN and DGCNN) in train_partseg.py. We also provide the bash template for training each models from scratch, JigSaw/OcCo pre-trained checkpoints, see bash_template/train_partseg_template.sh for details:

#!/usr/bin/env bash

cd ../

# training pointnet on ShapeNetPart, from scratch
python train_partseg.py \
	--gpu 0 \
	--normal \
	--bn_decay \
	--xavier_init \
	--model pointnet_partseg \
    --log_dir pointnet_scratch ;


# fine tuning pcn on ShapeNetPart, using jigsaw pre-trained checkpoints
python train_partseg.py \
	--gpu 0 \
	--normal \
	--bn_decay \
	--xavier_init \
	--model pcn_partseg \
	--log_dir pcn_jigsaw \
	--restore \
	--restore_path log/jigsaw/modelnet_pcn_vanilla/checkpoints/best_model.pth ;


# fine tuning dgcnn on ShapeNetPart, using occo pre-trained checkpoints
python train_partseg.py \
	--gpu 0,1 \
	--normal \
	--use_sgd \
	--xavier_init \
	--scheduler cos \
	--model dgcnn_partseg \
	--log_dir dgcnn_occo \
	--restore \
	--restore_path log/completion/modelnet_dgcnn_vanilla/checkpoints/best_model.pth ;


# test fine tuned pointnet on ShapeNetPart, using multiple votes
python train_partseg.py \
	--gpu 1 \
	--epoch 1 \
	--mode test \
	--num_votes 3 \
	--model pointnet_partseg \
	--log_dir pointnet_scratch \
	--restore \
	--restore_path log/partseg/pointnet_occo/checkpoints/best_model.pth ;

6) OcCo Data Generation (Create Your Own Dataset for OcCo Pre-Training)

For the details in the self-occluded point cloud generation, please see render/readme.md.

7) Just Completion (Complete Your Own Data with Pre-Trained Model)

You can use it for completing your occluded point cloud data with our provided OcCo checkpoints.

8) Jigsaw Puzzle

We also provide our implementation (developed from scratch) on pre-training point cloud models via solving 3d jigsaw puzzles tasks as well as data generation, the method is described in this paper, while the authors did not reprocess to our code request. The details of our implementation is reported in our paper appendix.

For the details of our implementation, please refer to description in the appendix of our paper and relevant code snippets, i.e., train_jigsaw.py, utils/3DPC_Data_Gen.py and train_jigsaw_template.sh.

Results

Generated Dataset:

image

Completed Occluded Point Cloud:

-- PointNet:

image

-- PCN:

image

-- DGCNN:

image

-- Failure Examples:

image

Visualization of learned features:

image

Classification (linear SVM):

image

Classification:

image

##### Semantic Segmentation:

image

##### Part Segmentation:

image

Sample Efficiency:

image

Learning Efficiency:

image

For the description and discussion of the results, please refer to our paper, thanks :)

Contributing

The code of this project is released under the MIT License.

We would like to thank and acknowledge referenced codes from the following repositories:

https://github.com/wentaoyuan/pcn

https://github.com/hansen7/NRS_3D

https://github.com/WangYueFt/dgcnn

https://github.com/charlesq34/pointnet

https://github.com/charlesq34/pointnet2

https://github.com/PointCloudLibrary/pcl

https://github.com/AnTao97/dgcnn.pytorch

https://github.com/HuguesTHOMAS/KPConv

https://github.com/QingyongHu/RandLA-Net

https://github.com/chrdiller/pyTorchChamferDistance

https://github.com/yanx27/Pointnet_Pointnet2_pytorch

https://github.com/AnTao97/UnsupervisedPointCloudReconstruction

We appreciate the help from the supportive technicians, Peter and Raf, from Cambridge Engineering :)

bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
Code and data accompanying our SVRHM'21 paper.

Code and data accompanying our SVRHM'21 paper. Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 to be installed. Python scripts i

5 Nov 17, 2021
Pytorch Lightning 1.2k Jan 06, 2023
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Hehe Fan 101 Dec 29, 2022
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 06, 2023
CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax ⚠️ Latest: Current repo is a complete version. But we delet

FishYuLi 341 Dec 23, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023