Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

Overview

English | 简体中文

Why Non-Euclidean Geometry

Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-hop distance between nodes with different color. Now how could we embed these structures in Euclidean space while keeping these distance unchanged?

Actually perfect embedding without distortion, appearing naturally in hyperbolic (negative curvature) or spherical (positive curvature) space, is infeasible in Euclidean space [1].

As shown above, due to the high capacity of modeling complex structured data, e.g. scale-free, hierarchical or cyclic, there has been an growing interest in building deep learning models under non-Euclidean geometry, e.g. link prediction [2], recommendation [3].

What's CurvLearn

In this repository, we provide a framework, named CurvLearn, for training deep learning models in non-Euclidean spaces.

The framework implements the non-Euclidean operations in Tensorflow and remains the similar interface style for developing deep learning models.

Currently, CurvLearn serves for training several recommendation models in Alibaba. We implement CurvLearn on top of our distributed (graph/deep learning) training engines including Euler and x-deeplearning. The figure below shows how the category tree is embedded in hyperbolic space by using CurvLearn.

Why CurvLearn

CurvLearn has the following major features.

  1. Easy-to-Use. Converting a Tensorflow model from Euclidean space to non-Euclidean spaces with CurvLearn is graceful and undemanding, due to the manifold operations are decoupled from model architecture and similar to vanilla Tensorflow operations. For researchers, CurvLearn also reserves lucid interfaces for developing novel manifolds and optimizers.
  2. Comprehensive methods. CurvLearn is the first Tensorflow based non-Euclidean deep learning framework and supports several typical non-Euclidean spaces, e.g. constant curvature and mixed-curvature manifolds, together with necessary manifold operations and optimizers.
  3. Verified by tremendous industrial traffic. CurvLearn is serving on Alibaba's sponsored search platform with billions of online traffic in several key scenarios e.g. matching and cate prediction. Compared to Euclidean models, CurvLearn can bring more revenue and the RPM (revenue per mille) increases more than 1%.

Now we are working on exploring more non-Euclidean methods and integrating operations with Tensorflow. PR is welcomed!

CurvLearn Architecture

Manifolds

We implemented several types of constant curvature manifolds and the mixed-curvature manifold.

  • curvlearn.manifolds.Euclidean - Euclidean space with zero curvature.
  • curvlearn.manifolds.Stereographic - Constant curvature stereographic projection model. The curvature can be positive, negative or zero.
  • curvlearn.manifolds.PoincareBall - The stereographic projection of the Lorentz model with negative curvature.
  • curvlearn.manifolds.ProjectedSphere - The stereographic projection of the sphere model with positive curvature.
  • curvlearn.manifolds.Product - Mixed-curvature space consists of multiple manifolds with different curvatures.

Operations

To build a non-Euclidean deep neural network, we implemented several basic neural network operations. Complex operations can be decomposed into basic operations explicitly or realized in tangent space implicitly.

  • variable(t, c) - Defines a riemannian variable from manifold or tangent space at origin according to its name.
  • to_manifold(t, c, base) - Converts a tensor t in the tangent space of base point to the manifold.
  • to_tangent(t, c, base) - Converts a tensor t in the manifold to the tangent space of base point.
  • weight_sum(tensor_list, a, c) - Computes the sum of tensor list tensor_list with weight list a.
  • mean(t, c, axis) - Computes the average of elements along axis dimension of a tensor t.
  • sum(t, c, axis) - Computes the sum of elements along axis dimension of a tensor t.
  • concat(tensor_list, c, axis) - Concatenates tensor list tensor_list along axis dimension.
  • matmul(t, m, c) - Multiplies tensor t by euclidean matrix m.
  • add(x, y, c) - Adds tensor x and tensor y.
  • add_bias(t, b, c) - Adds a euclidean bias vector b to tensor t.
  • activation(t, c_in, c_out, act) - Computes the value of activation function act for the input tensor t.
  • linear(t, in_dim, out_dim, c_in, c_out, act, scope) - Computes the linear transformation for the input tensor t.
  • distance(src, tar, c) - Computes the squared geodesic/distance between src and tar.

Optimizers

We also implemented several typical riemannian optimizers. Please refer to [4] for more details.

  • curvlearn.optimizers.rsgd - Riemannian stochastic gradient optimizer.
  • curvlearn.optimizers.radagrad - Riemannian Adagrad optimizer.
  • curvlearn.optimizers.radam - Riemannian Adam optimizer.

How to use CurvLearn

To get started with CurvLearn quickly, we provide a simple binary classification model as a quick start and three representative examples for the application demo. Note that the non-Euclidean model is sensitive to the hyper-parameters such as learning rate, loss functions, optimizers, and initializers. It is necessary to tune those hyper-parameters when transferring to other datasets.

Installation

CurvLearn requires tensorflow~=1.15, compatible with both python 2/3.

The preferred way for installing is via pip.

pip install curvlearn

Quick Start

Here we show how to build binary classification model using CurvLearn. Model includes Stereographic manifold, linear operations , radam optimizer, etc.

Instructions and implement details are shown in Quick Start.

HGCN on Link Prediction [2]

HGCN (Hyperbolic Graph Convolutional Neural Network) is the first inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive node representations for hierarchical and scale-free graphs. Run the command to check the accuracy on the OpenFlight airport dataset. Running environment and performance are listed in hgcn.

python examples/hgcn/train.py

HyperML on Recommendation Ranking [3]

HyperML (Hyperbolic Metric Learning) applies hyperbolic geometry to recommender systems through metric learning approach and achieves state-of-the-art performance on multiple benchmark datasets. Run the command to check the accuracy on the Amazon Kindle-Store dataset. Running environment and performance are listed in hyperml.

python examples/hyperml/train.py

Hyper Tree Pre-train Model

In the real-world, data is often organized in tree-like structure or can be represented hierarchically. It has been proven that hyperbolic deep neural networks have significant advantages over tree-data representation than Euclidean models. In this case, we present a hyperbolic graph pre-train model for category tree in Taobao. The further details including dataset description, model architecture and visualization of results can be found in CateTreePretrain.

python examples/tree_pretrain/run_model.py

References

[1] Bachmann, Gregor, Gary Bécigneul, and Octavian Ganea. "Constant curvature graph convolutional networks." International Conference on Machine Learning. PMLR, 2020.

[2] Chami, Ines, et al. "Hyperbolic graph convolutional neural networks." Advances in neural information processing systems 32 (2019): 4868-4879.

[3] Vinh Tran, Lucas, et al. "Hyperml: A boosting metric learning approach in hyperbolic space for recommender systems." Proceedings of the 13th International Conference on Web Search and Data Mining. 2020.

[4] Bécigneul, Gary, and Octavian-Eugen Ganea. "Riemannian adaptive optimization methods." arXiv preprint arXiv:1810.00760 (2018).

License

This project is licensed under the Apache License, Version 2.0, unless otherwise explicitly stated.

Owner
Alibaba
Alibaba Open Source
Alibaba
DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control

DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control One version of our system is implemented using the

260 Nov 28, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Abdultawwab Safarji 7 Nov 27, 2022
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022