Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Overview

Dense Contrastive Learning for Self-Supervised Visual Pre-Training

This project hosts the code for implementing the DenseCL algorithm for self-supervised representation learning.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training,
Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, Lei Li
In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2021
arXiv preprint (arXiv 2011.09157)

highlights2

Highlights

  • Boosting dense predictions: DenseCL pre-trained models largely benefit dense prediction tasks including object detection and semantic segmentation (up to +2% AP and +3% mIoU).
  • Simple implementation: The core part of DenseCL can be implemented in 10 lines of code, thus being easy to use and modify.
  • Flexible usage: DenseCL is decoupled from the data pre-processing, thus enabling fast and flexible training while being agnostic about what kind of augmentation is used and how the images are sampled.
  • Efficient training: Our method introduces negligible computation overhead (only <1% slower) compared to the baseline method.

highlights

Updates

  • Code and pre-trained models of DenseCL are released. (02/03/2021)

Installation

Please refer to INSTALL.md for installation and dataset preparation.

Models

For your convenience, we provide the following pre-trained models on COCO or ImageNet.

pre-train method pre-train dataset backbone #epoch training time VOC det VOC seg Link
Supervised ImageNet ResNet-50 - - 54.2 67.7 download
MoCo-v2 COCO ResNet-50 800 1.0d 54.7 64.5 download
DenseCL COCO ResNet-50 800 1.0d 56.7 67.5 download
DenseCL COCO ResNet-50 1600 2.0d 57.2 68.0 download
MoCo-v2 ImageNet ResNet-50 200 2.3d 57.0 67.5 download
DenseCL ImageNet ResNet-50 200 2.3d 58.7 69.4 download
DenseCL ImageNet ResNet-101 200 4.3d 61.3 74.1 download

Note:

  • The metrics for VOC det and seg are AP (COCO-style) and mIoU. The results are averaged over 5 trials.
  • The training time is measured on 8 V100 GPUs.
  • See our paper for more results on different benchmarks.

Usage

Training

./tools/dist_train.sh configs/selfsup/densecl/densecl_coco_800ep.py 8

Extracting Backbone Weights

WORK_DIR=work_dirs/selfsup/densecl/densecl_coco_800ep/
CHECKPOINT=${WORK_DIR}/epoch_800.pth
WEIGHT_FILE=${WORK_DIR}/extracted_densecl_coco_800ep.pth

python tools/extract_backbone_weights.py ${CHECKPOINT} ${WEIGHT_FILE}

Transferring to Object Detection and Segmentation

Please refer to README.md for transferring to object detection and semantic segmentation.

Tips

  • After extracting the backbone weights, the model can be used to replace the original ImageNet pre-trained model as initialization for many dense prediction tasks.
  • If your machine has a slow data loading issue, especially for ImageNet, your are suggested to convert ImageNet to lmdb format through folder2lmdb_imagenet.py, and use this config for training.

Acknowledgement

We would like to thank the OpenSelfSup for its open-source project and PyContrast for its detection evaluation configs.

Citations

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follow.

@inproceedings{wang2020DenseCL,
  title={Dense Contrastive Learning for Self-Supervised Visual Pre-Training},
  author={Wang, Xinlong and Zhang, Rufeng and Shen, Chunhua and Kong, Tao and Li, Lei},
  booktitle =  {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}
Owner
Xinlong Wang
Xinlong Wang
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
Download files from DSpace systems (because for some reason DSpace won't let you)

DSpaceDL A tool for downloading files from DSpace items. For some reason, DSpace systems have a dogshit UI, and Universities absolutely LOOOVE to use

Soumitra Shewale 5 Dec 01, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape

394 Dec 30, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022