StyleMapGAN - Official PyTorch Implementation

Overview

StyleMapGAN - Official PyTorch Implementation

StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing
Hyunsu Kim, Yunjey Choi, Junho Kim, Sungjoo Yoo, Youngjung Uh
In CVPR 2021.

Paper: https://arxiv.org/abs/2104.14754
Video: https://youtu.be/qCapNyRA_Ng

Abstract: Generative adversarial networks (GANs) synthesize realistic images from random latent vectors. Although manipulating the latent vectors controls the synthesized outputs, editing real images with GANs suffers from i) time-consuming optimization for projecting real images to the latent vectors, ii) or inaccurate embedding through an encoder. We propose StyleMapGAN: the intermediate latent space has spatial dimensions, and a spatially variant modulation replaces AdaIN. It makes the embedding through an encoder more accurate than existing optimization-based methods while maintaining the properties of GANs. Experimental results demonstrate that our method significantly outperforms state-of-the-art models in various image manipulation tasks such as local editing and image interpolation. Last but not least, conventional editing methods on GANs are still valid on our StyleMapGAN. Source code is available at https://github.com/naver-ai/StyleMapGAN.

Demo

Youtube video Click the figure to watch the teaser video.

Interactive demo app Run demo in your local machine.

All test images are from CelebA-HQ, AFHQ, and LSUN.

python demo.py --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --dataset celeba_hq

Installation

ubuntu gcc 7.4.0 CUDA CUDA-driver cudnn7 conda Python 3.6.12 pytorch 1.4.0

Clone this repository:

git clone https://github.com/naver-ai/StyleMapGAN.git
cd StyleMapGAN/

Install the dependencies:

conda create -y -n stylemapgan python=3.6.12
conda activate stylemapgan
./install.sh

Datasets and pre-trained networks

We provide a script to download datasets used in StyleMapGAN and the corresponding pre-trained networks. The datasets and network checkpoints will be downloaded and stored in the data and expr/checkpoints directories, respectively.

CelebA-HQ. To download the CelebA-HQ dataset and parse it, run the following commands:

# Download raw images and create LMDB datasets using them
# Additional files are also downloaded for local editing
bash download.sh create-lmdb-dataset celeba_hq

# Download the pretrained network (256x256)
bash download.sh download-pretrained-network-256 celeba_hq

# Download the pretrained network (1024x1024 image / 16x16 stylemap / Light version of Generator)
bash download.sh download-pretrained-network-1024 ffhq_16x16

AFHQ. For AFHQ, change above commands from 'celeba_hq' to 'afhq'.

Train network

Implemented using DistributedDataParallel.

# CelebA-HQ
python train.py --dataset celeba_hq --train_lmdb data/celeba_hq/LMDB_train --val_lmdb data/celeba_hq/LMDB_val

# AFHQ
python train.py --dataset afhq --train_lmdb data/afhq/LMDB_train --val_lmdb data/afhq/LMDB_val

# CelebA-HQ / 1024x1024 image / 16x16 stylemap / Light version of Generator
python train.py --size 1024 --latent_spatial_size 16 --small_generator --dataset celeba_hq --train_lmdb data/celeba_hq/LMDB_train --val_lmdb data/celeba_hq/LMDB_val 

Generate images

Reconstruction Results are saved to expr/reconstruction.

# CelebA-HQ
python generate.py --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --mixing_type reconstruction --test_lmdb data/celeba_hq/LMDB_test

# AFHQ
python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type reconstruction --test_lmdb data/afhq/LMDB_test

W interpolation Results are saved to expr/w_interpolation.

# CelebA-HQ
python generate.py --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --mixing_type w_interpolation --test_lmdb data/celeba_hq/LMDB_test

# AFHQ
python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type w_interpolation --test_lmdb data/afhq/LMDB_test

Local editing Results are saved to expr/local_editing. We pair images using a target semantic mask similarity. If you want to see details, please follow preprocessor/README.md.

# Using GroundTruth(GT) segmentation masks for CelebA-HQ dataset.
python generate.py --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --mixing_type local_editing --test_lmdb data/celeba_hq/LMDB_test --local_editing_part nose

# Using half-and-half masks for AFHQ dataset.
python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type local_editing --test_lmdb data/afhq/LMDB_test

Unaligned transplantation Results are saved to expr/transplantation. It shows local transplantations examples of AFHQ. We recommend the demo code instead of this.

python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type transplantation --test_lmdb data/afhq/LMDB_test

Random Generation Results are saved to expr/random_generation. It shows random generation examples.

python generate.py --mixing_type random_generation --ckpt expr/checkpoints/celeba_hq_256_8x8.pt

Style Mixing Results are saved to expr/stylemixing. It shows style mixing examples.

python generate.py --mixing_type stylemixing --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --test_lmdb data/celeba_hq/LMDB_test

Semantic Manipulation Results are saved to expr/semantic_manipulation. It shows local semantic manipulation examples.

python semantic_manipulation.py --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --LMDB data/celeba_hq/LMDB --svm_train_iter 10000

Metrics

  • Reconstruction: LPIPS, MSE
  • W interpolation: FIDlerp
  • Generation: FID
  • Local editing: MSEsrc, MSEref, Detectability (Refer to CNNDetection)

If you want to see details, please follow metrics/README.md.

License

The source code, pre-trained models, and dataset are available under Creative Commons BY-NC 4.0 license by NAVER Corporation. You can use, copy, tranform and build upon the material for non-commercial purposes as long as you give appropriate credit by citing our paper, and indicate if changes were made.

For business inquiries, please contact [email protected].
For technical and other inquires, please contact [email protected].

Citation

If you find this work useful for your research, please cite our paper:

@inproceedings{kim2021stylemapgan,
  title={Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing},
  author={Kim, Hyunsu and Choi, Yunjey and Kim, Junho and Yoo, Sungjoo and Uh, Youngjung},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Related Projects

Model code starts from StyleGAN2 PyTorch unofficial code, which refers to StyleGAN2 official code. LPIPS, FID, and CNNDetection codes are used for evaluation. In semantic manipulation, we used StyleGAN pretrained network to get positive and negative samples by ranking. The demo code starts from Neural-Collage.

Owner
NAVER AI
Official account of NAVER AI, Korea No.1 Industrial AI Research Group
NAVER AI
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.

SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu

Phil Wang 207 Dec 23, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
Implementation of Change-Based Exploration Transfer (C-BET)

Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

Simone Parisi 29 Dec 04, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022