PyQt6 configuration in yaml format providing the most simple script.

Overview

PyamlQt(ぴゃむるきゅーと)

PyPI version

PyQt6 configuration in yaml format providing the most simple script.

Requirements

  • yaml
  • PyQt6, ( PyQt5 )

Installation

pip install PyamlQt

Demo

python3 examples/chaos.py

Template

See examples/simple_gui.py.

import sys
import os

from pyamlqt.create_widgets import create_widgets
import pyamlqt.qt6_switch as qt6_switch

qt6_mode = qt6_switch.qt6

if qt6_mode:
    from PyQt6.QtWidgets import QApplication, QMainWindow
else:
    from PyQt5.QtWidgets import QApplication, QMainWindow

YAML = os.path.join(os.path.dirname(__file__), "../yaml/chaos.yaml")

class MainWindow(QMainWindow):
    def __init__(self):
        self.number = 0
        super().__init__()

        # geometry setting ---
        self.setWindowTitle("Simple GUI")
        self.setGeometry(0, 0, 800, 720)
        
        # Template ==========================================
        self.widgets, self.stylesheet = self.create_all_widgets(YAML)
        for key in self.widgets.keys():
            self.widgets[key].setStyleSheet(self.stylesheet[key])
        # ==============================================

        # --- Your code ----
        # -*-*-*-*-*-*-*-*-*
        # -----------------
        
        self.show()

    # Template ==========================================
    def create_all_widgets(self, yaml_path: str) -> dict:
        import yaml
        widgets, stylesheet_str = dict(), dict()
        with open(yaml_path, 'r') as f:
            self.yaml_data = yaml.load(f, Loader=yaml.FullLoader)
        
            for key in self.yaml_data:
                data = create_widgets.create(self, yaml_path, key, os.path.abspath(os.path.dirname(__file__)) + "/../")
                widgets[key], stylesheet_str[key] = data[0], data[1]

        return widgets, stylesheet_str
    # ==============================================

if __name__ == '__main__':
    app = QApplication(sys.argv)
    window = MainWindow()
    # sys.exit(app.exec_())
    sys.exit(app.exec())

Elements (dev)

In yaml, you can add the following elements defined in PyQt.Widgets This may be added in the future.

  • pushbutton : definition of QPushButton
  • qlabel : definition of QLabel
  • qlcdnumber : definition of QLCDNumber
  • qprogressbar : definition of QProgressBar
  • qlineedit : definition of QLineEdit
  • qcheckbox : definition of QCheckbox
  • qslider : definition of QSlider
  • qspinbox : definition of QSpinBox
  • qcombobox : definition of QCombobox
  • image : definition of QLabel (using image path)
  • stylesheet : definition of Stylesheet (define as QLabel and setHidden=True)

YAML format

PyamlQt defines common elements for simplicity. Not all values need to be defined, but if not set, default values will be applied

key: # key name (Required for your scripts)
  type: slider # QWidgets
  x_center: 500 # x center point
  y_center: 550 # y center point
  width: 200 # QWidgets width
  height: 50 # QWidgets height
  max: 100 # QObject max value
  min: 0 # QObject min value
  default: 70 # QObject set default value
  text: "Slider" # Text
  font_size: 30 # Text size [px]
  font_color: "#ff0000" # Text color
  font: "Ubuntu" # Text font
  font_bold: false # bold-text option
  items: # Selectable items( Combobox's option )
    - a
    - b
    - c

PyQt5 Mode

If you want to use PyQt5, you have to change the qt6_switch.py file.

  • Open the file and change the qt6_mode variable to False.
  • pip3 install PyQt5
  • pip3 install -v -e .
You might also like...
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Interactive Terraform visualization. State and configuration explorer.
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Releases(v0.3.0)
  • v0.3.0(Apr 28, 2022)

    Japanese

    PyamlQtはGUIデザイン初心者のためのGUI定義フォーマットです。コントリビューション大歓迎です!

    しばらくはAPIの破壊的変更が行われる可能性があります。

    変更点

    • 新しいモジュールPyamlQtWindow
      • 初期化には引数が必要です。(README.mdを読んでください)
      • デモプログラムがとてもシンプルになりました。

    English

    PyamlQt is a GUI definition format for GUI design beginners. Contributions are welcome!

    There is a possibility of destructive changes to the API for the time being.

    Changes

    • New module PyamlQtWindow.
      • Arguments are required for initialization. (Please read README.md)
      • The demo program is now very simple.

    import sys
    import os
    
    from pyamlqt.mainwindow import PyamlQtWindow
    from PyQt6.QtWidgets import QApplication
    
    YAML = os.path.join(os.path.dirname(__file__), ". /yaml/chaos.yaml")
    
    class MainWindow(PyamlQtWindow):
        def __init__(self):
            self.number = 0
            super(). __init__("title", 0, 0, 800, 720, YAML)
            self.show()
    
    if __name__ == '__main__':
        app = QApplication(sys.argv)
        window = MainWindow()
        sys.exit(app.exec())
    
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Apr 13, 2022)

    Japanese

    PyamlQtはGUIデザイン初心者のためのGUI定義フォーマットです。コントリビューション大歓迎です!

    しばらくはAPIの破壊的変更が行われる可能性があります。

    変更点

    • rect要素とstyle要素を追加し、stylesheetの仕様が大きく変更されました。
    • 複数のyamlからのロードをサポートします。パスは絶対パスを指定するか、GitHubなどのソースコードへのURL(raw.githubusercontent.com に続くURL)を指定してください。
      • URL指定する場合は~/.cache/pyamlqt/yaml以下にyamlがダウンロードされます。
      • ロード先のyamlファイルで同じファイル名・同じキー名を指定しないでください。再帰的にロードされてメモリを消費し続けます。

    English

    PyamlQt is a GUI definition format for GUI design beginners. Contributions are welcome!

    The API may undergo destructive changes for a while.

    Changes

    • The specification of stylesheet has been significantly changed with the addition of the rect and style elements.
    • Support for loading from multiple yaml files. Paths should be absolute paths or URLs to source code such as GitHub (URLs following raw.githubusercontent.com).
      • If you specify a URL, the yaml will be downloaded under ~/.cache/pyamlqt/yaml.
      • Do not specify the same file name and the same key name in the yaml file to be loaded. They will be loaded recursively and continue to consume memory.
    Source code(tar.gz)
    Source code(zip)
Owner
Ar-Ray
1st grade of National Institute of Technology(=Kosen) student. Associate degree, Hatena Blogger
Ar-Ray
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022