PyQt6 configuration in yaml format providing the most simple script.

Overview

PyamlQt(ぴゃむるきゅーと)

PyPI version

PyQt6 configuration in yaml format providing the most simple script.

Requirements

  • yaml
  • PyQt6, ( PyQt5 )

Installation

pip install PyamlQt

Demo

python3 examples/chaos.py

Template

See examples/simple_gui.py.

import sys
import os

from pyamlqt.create_widgets import create_widgets
import pyamlqt.qt6_switch as qt6_switch

qt6_mode = qt6_switch.qt6

if qt6_mode:
    from PyQt6.QtWidgets import QApplication, QMainWindow
else:
    from PyQt5.QtWidgets import QApplication, QMainWindow

YAML = os.path.join(os.path.dirname(__file__), "../yaml/chaos.yaml")

class MainWindow(QMainWindow):
    def __init__(self):
        self.number = 0
        super().__init__()

        # geometry setting ---
        self.setWindowTitle("Simple GUI")
        self.setGeometry(0, 0, 800, 720)
        
        # Template ==========================================
        self.widgets, self.stylesheet = self.create_all_widgets(YAML)
        for key in self.widgets.keys():
            self.widgets[key].setStyleSheet(self.stylesheet[key])
        # ==============================================

        # --- Your code ----
        # -*-*-*-*-*-*-*-*-*
        # -----------------
        
        self.show()

    # Template ==========================================
    def create_all_widgets(self, yaml_path: str) -> dict:
        import yaml
        widgets, stylesheet_str = dict(), dict()
        with open(yaml_path, 'r') as f:
            self.yaml_data = yaml.load(f, Loader=yaml.FullLoader)
        
            for key in self.yaml_data:
                data = create_widgets.create(self, yaml_path, key, os.path.abspath(os.path.dirname(__file__)) + "/../")
                widgets[key], stylesheet_str[key] = data[0], data[1]

        return widgets, stylesheet_str
    # ==============================================

if __name__ == '__main__':
    app = QApplication(sys.argv)
    window = MainWindow()
    # sys.exit(app.exec_())
    sys.exit(app.exec())

Elements (dev)

In yaml, you can add the following elements defined in PyQt.Widgets This may be added in the future.

  • pushbutton : definition of QPushButton
  • qlabel : definition of QLabel
  • qlcdnumber : definition of QLCDNumber
  • qprogressbar : definition of QProgressBar
  • qlineedit : definition of QLineEdit
  • qcheckbox : definition of QCheckbox
  • qslider : definition of QSlider
  • qspinbox : definition of QSpinBox
  • qcombobox : definition of QCombobox
  • image : definition of QLabel (using image path)
  • stylesheet : definition of Stylesheet (define as QLabel and setHidden=True)

YAML format

PyamlQt defines common elements for simplicity. Not all values need to be defined, but if not set, default values will be applied

key: # key name (Required for your scripts)
  type: slider # QWidgets
  x_center: 500 # x center point
  y_center: 550 # y center point
  width: 200 # QWidgets width
  height: 50 # QWidgets height
  max: 100 # QObject max value
  min: 0 # QObject min value
  default: 70 # QObject set default value
  text: "Slider" # Text
  font_size: 30 # Text size [px]
  font_color: "#ff0000" # Text color
  font: "Ubuntu" # Text font
  font_bold: false # bold-text option
  items: # Selectable items( Combobox's option )
    - a
    - b
    - c

PyQt5 Mode

If you want to use PyQt5, you have to change the qt6_switch.py file.

  • Open the file and change the qt6_mode variable to False.
  • pip3 install PyQt5
  • pip3 install -v -e .
You might also like...
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Interactive Terraform visualization. State and configuration explorer.
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Releases(v0.3.0)
  • v0.3.0(Apr 28, 2022)

    Japanese

    PyamlQtはGUIデザイン初心者のためのGUI定義フォーマットです。コントリビューション大歓迎です!

    しばらくはAPIの破壊的変更が行われる可能性があります。

    変更点

    • 新しいモジュールPyamlQtWindow
      • 初期化には引数が必要です。(README.mdを読んでください)
      • デモプログラムがとてもシンプルになりました。

    English

    PyamlQt is a GUI definition format for GUI design beginners. Contributions are welcome!

    There is a possibility of destructive changes to the API for the time being.

    Changes

    • New module PyamlQtWindow.
      • Arguments are required for initialization. (Please read README.md)
      • The demo program is now very simple.

    import sys
    import os
    
    from pyamlqt.mainwindow import PyamlQtWindow
    from PyQt6.QtWidgets import QApplication
    
    YAML = os.path.join(os.path.dirname(__file__), ". /yaml/chaos.yaml")
    
    class MainWindow(PyamlQtWindow):
        def __init__(self):
            self.number = 0
            super(). __init__("title", 0, 0, 800, 720, YAML)
            self.show()
    
    if __name__ == '__main__':
        app = QApplication(sys.argv)
        window = MainWindow()
        sys.exit(app.exec())
    
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Apr 13, 2022)

    Japanese

    PyamlQtはGUIデザイン初心者のためのGUI定義フォーマットです。コントリビューション大歓迎です!

    しばらくはAPIの破壊的変更が行われる可能性があります。

    変更点

    • rect要素とstyle要素を追加し、stylesheetの仕様が大きく変更されました。
    • 複数のyamlからのロードをサポートします。パスは絶対パスを指定するか、GitHubなどのソースコードへのURL(raw.githubusercontent.com に続くURL)を指定してください。
      • URL指定する場合は~/.cache/pyamlqt/yaml以下にyamlがダウンロードされます。
      • ロード先のyamlファイルで同じファイル名・同じキー名を指定しないでください。再帰的にロードされてメモリを消費し続けます。

    English

    PyamlQt is a GUI definition format for GUI design beginners. Contributions are welcome!

    The API may undergo destructive changes for a while.

    Changes

    • The specification of stylesheet has been significantly changed with the addition of the rect and style elements.
    • Support for loading from multiple yaml files. Paths should be absolute paths or URLs to source code such as GitHub (URLs following raw.githubusercontent.com).
      • If you specify a URL, the yaml will be downloaded under ~/.cache/pyamlqt/yaml.
      • Do not specify the same file name and the same key name in the yaml file to be loaded. They will be loaded recursively and continue to consume memory.
    Source code(tar.gz)
    Source code(zip)
Owner
Ar-Ray
1st grade of National Institute of Technology(=Kosen) student. Associate degree, Hatena Blogger
Ar-Ray
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
Simply enable or disable your Nvidia dGPU

EnvyControl (WIP) Simply enable or disable your Nvidia dGPU Usage First clone this repo and install envycontrol with sudo pip install . CLI Turn off y

Victor Bayas 292 Jan 03, 2023
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
Official implementation of Pixel-Level Bijective Matching for Video Object Segmentation

BMVOS This is the official implementation of Pixel-Level Bijective Matching for Video Object Segmentation, to appear in WACV 2022. @article{cho2021pix

Suhwan Cho 13 Dec 14, 2022