Gray Zone Assessment

Overview

Gray Zone Assessment

Get started

  1. Clone github repository
git clone https://github.com/andreanne-lemay/gray_zone_assessment.git
  1. Build docker image
docker build -t gray_zone docker/
  1. Run docker container
docker run -it -v tunnel/to/local/folder:/tunnel --gpus 0 gray_zone:latest bash
  1. Run the following command at the root of the repository to install the modules
cd path/to/gray_zone_assessment
pip install -e .
  1. Train model
python run_model.py -o <outpath/path> -p <resources/training_configs/config.json> -d <image/data/path> -c <path/csv/file.csv>

For more information on the different flags: python run_model.py --help

Configuration file (flag -p or --param-path)

The configuration file is a json file containing the main training parameters.
Some json file examples are located in gray_zone/resources/training_configs/

Required configuration parameters

Parameter Description
architecture Architecture id contained in Densenet or Resnet family. Choice between: 'densenet121', 'densenet169', 'densenet201', 'densenet264', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'
model_type Choice between "classification", "ordinal", "regression".
loss Loss function id. Choice between 'ce' (Cross entropy), 'mse' (Mean square error), 'l1' (L1), 'bce' (Binary cross entropy), 'coral' (Ordinal loss), 'qwk' (Quadratic weighted kappa).
batch_size Batch size (int).
lr Learning rate (float).
n_epochs Number of training epochs (int).
device Device id (e.g., 'cuda:0', 'cpu') (str).
val_metric Choice between "auc" (average ROC AUC over all classes), "val_loss" (minimum validation loss), "kappa" (linear Cohen's kappa), default "accuracy".
dropout_rate Dropout rate (Necessary for Monte Carlo model's). A dropout rate of 0 will disable dropout. (float).
is_weighted_loss Indicates if the loss is weighted by the number of cases by class (bool).
is_weighted_sampling Indicates if the sampling is weighted by the number of cases by class (bool).
seed Random seed (int).
train_frac Fraction of cases used for training if splitting not already done in csv file, or else the parameter is ignored (float).
test_frac Fraction of cases used for testing if splitting not already done in csv file, or else the parameter is ignored (float).
train_transforms / val_transforms monai training / validation transforms with parameters. Validation transforms are also used during testing (see https://docs.monai.io/en/latest/transforms.html for transform list)

csv file (flag -c or --csv-path)

The provided csv file contains the filename of the images used for training, GT labels (int from 0-n_class), patient ID (str) and split column (containing 'train', 'val' or 'test') (optional).

Example of csv file with the default column names. If the column names are different from the default values, the flags --label-colname, --image-colname, --patient-colname, and --split-colname can be used to indicate the custom column names. There can be more columns in the csv file. All this metadata will be included in predictions.csv and split_df.csv.

image label patient dataset
patient1_000.png 0 patient1 train
patient1_001.png 0 patient1 train
patient2_000.png 2 patient2 val
patient2_001.png 2 patient2 val
patient2_002.png 2 patient2 val
patient3_000.png 1 patient3 test
patient3_001.png 1 patient3 test

Output directory (flag -o or --output-path)


└── output directory                # Output directory specified with `-o`  
    ├──   checkpoints               # All models (one .pth per epoch)  
    |     ├──  checkpoint0.pth   
    |     ├──  ...  
    |     └──  checkpointn.pth   
    ├──   best_metric_model.pth     # Best model based on validation metric  
    ├──   params.json               # Parameters used for training (configuration file)  
    ├──   predictions.csv           # Test results  
    ├──   split_df.csv              # csv file containing image filenames, labels, split and patient id  
    └──   train_record.json         # Record of CLI used to train and other info for reproducibility  
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
Collection of Docker images for ML/DL and video processing projects

Collection of Docker images for ML/DL and video processing projects. Overview of images Three types of images differ by tag postfix: base: Python with

OSAI 87 Nov 22, 2022
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022