Learning to Self-Train for Semi-Supervised Few-Shot

Overview

Learning to Self-Train for Semi-Supervised Few-Shot Classification

LICENSE Python TensorFlow

This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Learning to Self-Train for Semi-Supervised Few-Shot Classification".

Check the few-shot classification leaderboard.

Summary

Installation

In order to run this repository, we advise you to install python 2.7 or 3.5 and TensorFlow 1.3.0 with Anaconda.

You may download Anaconda and read the installation instruction on their official website: https://www.anaconda.com/download/

Create a new environment and install tensorflow on it:

conda create --name lst-tf python=2.7
conda activate lst-tf
conda install tensorflow-gpu=1.3.0

Install other requirements:

pip install scipy tqdm opencv-python pillow matplotlib

Clone this repository:

git clone https://github.com/xinzheli1217/learning-to-self-train.git 
cd learning-to-self-train

Project Architecture

.
├── data_generator              # dataset generator 
|   └── meta_data_generator.py  # data genertor for meta-train phase
├── models                      # tensorflow model files 
|   ├── models.py               # resnet12 CNN class
|   └── meta_model_LST.py       # semi-supervised meta-train model class
├── trainer                     # tensorflow trianer files  
|   └── meta_LST.py             # semi-supervised meta-train trainer class
├── utils                       # a series of tools used in this repo
|   └── misc.py                 # miscellaneous tool functions
| 
├── data                        # the folder containing datasets for experiments
├── pretrain_weights_dir        # the folder containing MTL pre-training weights
├── weights_saving_dir          # the folder containing meta-training weights
├── test_output_dir             # the folder containing meta-testing files
├── filenames_and_labels        # the folder containing image file paths and labels for experiments
|
├── exp_train.py                # the python file with main function and parameter settings for meta-training
└── exp_test.py                 # the python file with main function and parameter settings for meta-testing

Running Experiments

First, download our processed images: miniImagenet[Download Page] or tieredImagenet[Download Page], move the unziped folder to ./data. And then download the pre-trained models: miniImagenet[Download Page] or tieredImagenet[Download Page], move the unziped folder to ./pretrain_weights_dir.

Training from Pre-Trained Models

Run semi-supervised meta-train phase (e.g. 𝑚𝑖𝑛𝑖ImageNet, 1-shot) :

python exp_train.py --shot_num=1 --dataset='miniImagenet' --pretrain_class_num=64 --nb_ul_samples=10 --metatrain_iterations=15000 --exp_name='LST_mini_1_shot'

Run semi-supervised meta-test phase (e.g. 𝑚𝑖𝑛𝑖ImageNet, 1-shot) :

python exp_test.py --shot_num=1 --dataset='miniImagenet' --pretrain_class_num=64 --use_distractors=False --nb_ul_samples=100 --unfiles_num=10 --test_iter=15000 --recurrent_stage_nums=6 --nums_in_folders=30 --hard_selection=20 --exp_name='LST_mini_1_shot' 

Hyperparameters and Options

There are some main hyperparameters used in the experiments, you can edit them in the exp_train.py and the exp_test.py file for meta-train and meta-test phase respectively. There are two kinds of hyperparameters: (1) common hyperparameters that shared with meta-train and meta-test, (2) test-specific hyperparameters that used for recurrent self-training process in meta-test.

  • Common hyperparameters:

    • way_num number of classes
    • shot_num number of examples per class
    • dataset dataset used in the experiment (miniImagenet or tieredImagenet)
    • pretrain_class_num number of meta-train classes
    • exp_name name for the current experiment
    • meta_batch_size number of tasks sampled per meta-update in meta-train phase
    • base_lr step size alpha for inner gradient update
    • meta_lr the meta learning rate for SS and initial model parameters
    • min_meta_lr the min meta learning rate for all meta-parameters
    • swn_lr the meta learning rate for SWN
    • nb_ul_samples number of unlabeled examples per class
    • re_train_epoch_num number of re-training inner gradient updates
    • train_base_epoch_num number of total inner gradient updates during train (meta-train only)
    • test_base_epoch_num number of total inner gradient updates during test (meta-test only)
  • Test-specific hyperparameters:

    • use_distractors if using distractor classes during meta-test
    • num_dis number of distracting classes used for meta-testing
    • unfiles_num number of unlabeled sample files used in the experiment (There are 10 unlabeled samples per class in each file)
    • recurrent_stage_nums number of recurrent stages used during meta-test
    • local_update_num number of inner gradient updates used in each recurrent stage
    • nums_in_folders number of unlabeled samples (per class) used in each recurrent stage
    • hard_selection number of remaining samples (per class) after applying hard-selection

If you want to change other settings, please see the comments and descriptions in exp_train.py and exp_test.py.

Performance

(%) 𝑚𝑖𝑛𝑖 𝒕𝒊𝒆𝒓𝒆𝒅 𝑚𝑖𝑛𝑖 (w/D) 𝒕𝒊𝒆𝒓𝒆𝒅 (w/D)
1-shot 70.1 ± 1.9 77.7 ± 1.6 64.1 ± 1.9 73.5 ± 1.6
5-shot 78.7 ± 0.8 85.2 ± 0.8 77.4 ± 1.8 83.4 ± 0.8

Citation

Please cite our paper if it is helpful to your work:

@inproceedings{li2019lst,
  title={Learning to Self-Train for Semi-Supervised Few-Shot Classification},
  author = {Li, Xinzhe and Sun, Qianru and Liu, Yaoyao and Zhou, Qin and Zheng, Shibao and Chua, Tat-Seng and Schiele, Bernt},
  booktitle={NeurIPS},
  year={2019}
}

Acknowledgements

Our implementations use the source code from the following repositories and users:

Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
On Effective Scheduling of Model-based Reinforcement Learning

On Effective Scheduling of Model-based Reinforcement Learning Code to reproduce the experiments in On Effective Scheduling of Model-based Reinforcemen

laihang 8 Oct 07, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022