TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

Related tags

Deep LearningTorchGRL
Overview

TorchGRL

TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.TorchGRL is a modular simulation framework that integrates different GRL algorithms and SUMO simulation platform to realize the simulation of multi-agents decision-making algorithms in mixed traffic environment. You can adjust the test scenarios and the implemented GRL algorithm according to your needs.


Preparation

Before starting to carry out some relevant works on our framework, some preparations are required to be done.

Hardware

Our framework is developed based on a laptop, and the specific configuration is as follows:

  • Operating system: Ubuntu 20.04
  • RAM: 32 GB
  • CPU: Intel (R) Core (TM) i9-10980HK CPU @ 2.40GHz
  • GPU: RTX 2070

It should be noted that our program must be reproduced under the Ubuntu 20.04 operating system, and we strongly recommend using GPU for training.

Development Environment

Before compiling the code of our framework, you need to install the following development environment:

  • Ubuntu 20.04 with latest GPU driver
  • Pycharm
  • Anaconda
  • CUDA 11.1
  • cudnn-11.1, 8.0.5.39

Installation

Please download our GRL framework repository first:

git clone https://github.com/Jacklinkk/TorchGRL.git

Then enter the root directory of TorchGRL:

cd TorchGRL

and please be sure to run the below commands from /path/to/TorchGRL.

Installation of FLOW

The FLOW library will be firstly installed.

Firstly, enter the flow directory:

cd flow

Then, create a conda environment from flow library:

conda env create -f environment.yml

Activate conda environment:

conda activate TorchGCQ

Install flow from source code:

python setup.py develop

Installation of SUMO

SUMO simulation platform will be installed. Please make sure to run the below commands in the "TorchGRL" virtual environment.

Install via pip:

pip install eclipse-sumo

Setting in Pycharm:

In order to adopt SUMO correctly, you need to define the environment variable of SUMO_HOME in Pycharm. The specific directory is:

/home/…/.conda/envs/TorchGCQ/lib/python3.7/site-packages/sumo

Setting in Ubuntu:

At first, run:

gedit ~/.bashrc

then copy the path name of SUMO_HOME to “~/.bashrc”:

export SUMO_HOME=“/home/…/.conda/envs/TorchGCQ/lib/python3.7/site-packages/sumo”

Finally, run:

source ~/.bashrc

Installation of Pytorch and related libraries

Please make sure to run the below commands in the "TorchGRL" virtual environment.

Installation of Pytorch:

We use Pytorch version 1.9.0 for development under a specific version of CUDA and cudnn.

pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

Installation of pytorch geometric:

Pytorch geometric is a Graph Neural Network (GNN) library upon Pytorch

pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.9.0+cu111.html

Installation of pfrl library

Please make sure to run the below commands in the "TorchGRL" virtual environment.

pfrl is a deep reinforcement learning library that implements various algorithms in Python using PyTorch.

Firstly, enter the pfrl directory:

cd pfrl

Then install from source code:

python setup.py develop

Instruction

flow folder

The flow folder is the root directory of the library after the FLOW library is installed through source code, including interface-related programs between DRL algorithms and SUMO platform.

Flow_Test folder

The Flow_Test folder includes the related programs of the test environment configuration; specifically, T_01.py is the core python program. If the program runs successfully, the environment configuration is successful.

pfrl folder

The pfrl folder is the root directory of the library after the deep reinforcement learning pfrl library is installed through source code, including all DRL related programs. The source program can be modified as needed.

GRLNet folder

The GRLNet folder contains the GRL neural network built in the Pytorch environment. You can modify the source code as needed or add your own neural network.

  • Pytorch_GRL.py constructs the fundamental neural network of GRL algorithms
  • Pytorch_GRL_Dueling.py constructs the dueling network of GRL algorithms

GRL_utils folder

The GRL_utils folder contains basic functions such as model training and testing, data storage, and curve drawing.

  • Train_and_Test.py contains the training and testing functions for the GRL model.
  • Data_Plot_Train.py is the function to plot the training data curve.
  • Data_Process_Test.py is the function to process the test data.
  • Fig folder stores the training data curve.
  • Logging_Training folder stores the training data generated by different GRL algorithms.
  • Logging_Test folder stores the testing data generated by different GRL algorithms.

GRL_Simulation folder

The GRL_Simulation folder is the core of our framework, which contains the core simulation program and some related functional programs.

  • main.py is the main program, containing the definition of FLOW parameters, as well as the controlling (start and end) of the simulation.
  • controller.py is the definition of vehicle control model based on FLOW library.
  • environment.py is the core program to build and initialize the simulation environment of SUMO.
  • network.py defines the road network.
  • registry_custom.py registers the simulation environment of SUMO to the gym library to realize the connection with GRL algorithms.
  • specific_environment.py defines the elements in MDPs, including state representation, action space and reward function.
  • Experiment folder is the core program of co-simulation under different GRL algorithms, including the initialization of the simulation environment, the initialization of the neural network, the training and testing of GRL algorithms, and the preservation of the training and testing results.
  • GRL_Trained_Models folder stores the trained GRL model when the training process ends.

Tutorial

You can simply run "main.py" in Pycharm to simulate the GRL algorithm, and observe the simulation process in SUMO platform. You can generate training plot such as Reward curve:

Verification of other algorithms

If you want to verify other algorithms, you can develop the source code as needed under the "Experiment folder", and don't forget to change the imported python script in "main.py". In addition, you can also construct your own network in GRLNet folder.

Verification of other traffic scenario

If you want to verify other traffic scenario, you can define a new scenario in "network.py". You can refer to the documentation of SUMO for more details .

Owner
XXQQ
XXQQ
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
A Python package for causal inference using Synthetic Controls

Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim

Oscar Engelbrektson 107 Dec 28, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
Processed, version controlled history of Minecraft's generated data and assets

mcmeta Processed, version controlled history of Minecraft's generated data and assets Repository structure Each of the following branches has a commit

Misode 75 Dec 28, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022