TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

Related tags

Deep LearningTorchGRL
Overview

TorchGRL

TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.TorchGRL is a modular simulation framework that integrates different GRL algorithms and SUMO simulation platform to realize the simulation of multi-agents decision-making algorithms in mixed traffic environment. You can adjust the test scenarios and the implemented GRL algorithm according to your needs.


Preparation

Before starting to carry out some relevant works on our framework, some preparations are required to be done.

Hardware

Our framework is developed based on a laptop, and the specific configuration is as follows:

  • Operating system: Ubuntu 20.04
  • RAM: 32 GB
  • CPU: Intel (R) Core (TM) i9-10980HK CPU @ 2.40GHz
  • GPU: RTX 2070

It should be noted that our program must be reproduced under the Ubuntu 20.04 operating system, and we strongly recommend using GPU for training.

Development Environment

Before compiling the code of our framework, you need to install the following development environment:

  • Ubuntu 20.04 with latest GPU driver
  • Pycharm
  • Anaconda
  • CUDA 11.1
  • cudnn-11.1, 8.0.5.39

Installation

Please download our GRL framework repository first:

git clone https://github.com/Jacklinkk/TorchGRL.git

Then enter the root directory of TorchGRL:

cd TorchGRL

and please be sure to run the below commands from /path/to/TorchGRL.

Installation of FLOW

The FLOW library will be firstly installed.

Firstly, enter the flow directory:

cd flow

Then, create a conda environment from flow library:

conda env create -f environment.yml

Activate conda environment:

conda activate TorchGCQ

Install flow from source code:

python setup.py develop

Installation of SUMO

SUMO simulation platform will be installed. Please make sure to run the below commands in the "TorchGRL" virtual environment.

Install via pip:

pip install eclipse-sumo

Setting in Pycharm:

In order to adopt SUMO correctly, you need to define the environment variable of SUMO_HOME in Pycharm. The specific directory is:

/home/…/.conda/envs/TorchGCQ/lib/python3.7/site-packages/sumo

Setting in Ubuntu:

At first, run:

gedit ~/.bashrc

then copy the path name of SUMO_HOME to “~/.bashrc”:

export SUMO_HOME=“/home/…/.conda/envs/TorchGCQ/lib/python3.7/site-packages/sumo”

Finally, run:

source ~/.bashrc

Installation of Pytorch and related libraries

Please make sure to run the below commands in the "TorchGRL" virtual environment.

Installation of Pytorch:

We use Pytorch version 1.9.0 for development under a specific version of CUDA and cudnn.

pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

Installation of pytorch geometric:

Pytorch geometric is a Graph Neural Network (GNN) library upon Pytorch

pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.9.0+cu111.html

Installation of pfrl library

Please make sure to run the below commands in the "TorchGRL" virtual environment.

pfrl is a deep reinforcement learning library that implements various algorithms in Python using PyTorch.

Firstly, enter the pfrl directory:

cd pfrl

Then install from source code:

python setup.py develop

Instruction

flow folder

The flow folder is the root directory of the library after the FLOW library is installed through source code, including interface-related programs between DRL algorithms and SUMO platform.

Flow_Test folder

The Flow_Test folder includes the related programs of the test environment configuration; specifically, T_01.py is the core python program. If the program runs successfully, the environment configuration is successful.

pfrl folder

The pfrl folder is the root directory of the library after the deep reinforcement learning pfrl library is installed through source code, including all DRL related programs. The source program can be modified as needed.

GRLNet folder

The GRLNet folder contains the GRL neural network built in the Pytorch environment. You can modify the source code as needed or add your own neural network.

  • Pytorch_GRL.py constructs the fundamental neural network of GRL algorithms
  • Pytorch_GRL_Dueling.py constructs the dueling network of GRL algorithms

GRL_utils folder

The GRL_utils folder contains basic functions such as model training and testing, data storage, and curve drawing.

  • Train_and_Test.py contains the training and testing functions for the GRL model.
  • Data_Plot_Train.py is the function to plot the training data curve.
  • Data_Process_Test.py is the function to process the test data.
  • Fig folder stores the training data curve.
  • Logging_Training folder stores the training data generated by different GRL algorithms.
  • Logging_Test folder stores the testing data generated by different GRL algorithms.

GRL_Simulation folder

The GRL_Simulation folder is the core of our framework, which contains the core simulation program and some related functional programs.

  • main.py is the main program, containing the definition of FLOW parameters, as well as the controlling (start and end) of the simulation.
  • controller.py is the definition of vehicle control model based on FLOW library.
  • environment.py is the core program to build and initialize the simulation environment of SUMO.
  • network.py defines the road network.
  • registry_custom.py registers the simulation environment of SUMO to the gym library to realize the connection with GRL algorithms.
  • specific_environment.py defines the elements in MDPs, including state representation, action space and reward function.
  • Experiment folder is the core program of co-simulation under different GRL algorithms, including the initialization of the simulation environment, the initialization of the neural network, the training and testing of GRL algorithms, and the preservation of the training and testing results.
  • GRL_Trained_Models folder stores the trained GRL model when the training process ends.

Tutorial

You can simply run "main.py" in Pycharm to simulate the GRL algorithm, and observe the simulation process in SUMO platform. You can generate training plot such as Reward curve:

Verification of other algorithms

If you want to verify other algorithms, you can develop the source code as needed under the "Experiment folder", and don't forget to change the imported python script in "main.py". In addition, you can also construct your own network in GRLNet folder.

Verification of other traffic scenario

If you want to verify other traffic scenario, you can define a new scenario in "network.py". You can refer to the documentation of SUMO for more details .

Owner
XXQQ
XXQQ
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023