PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

Overview

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition CVPR 2018, Salt Lake City, USA

Mikaela Angelina Uy and Gim Hee Lee

National University of Singapore

pic-network

Introduction

The PointNetVLAD is a deep network that addresses the problem of large-scale place recognition through point cloud based retrieval. The arXiv version of PointNetVLAD can be found here.

@inproceedings{uy2018pointnetvlad,
      title={PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition},
      author={Uy, Mikaela Angelina and Lee, Gim Hee},
      booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
      year={2018}
}

Benchmark Datasets

The benchmark datasets introdruced in this work can be downloaded here.

  • All submaps are in binary file format
  • Ground truth GPS coordinate of the submaps are found in the corresponding csv files for each run
  • Filename of the submaps are their timestamps which is consistent with the timestamps in the csv files
  • Use CSV files to define positive and negative point clouds
  • All submaps are preprocessed with the road removed and downsampled to 4096 points

Oxford Dataset

  • 45 sets in total of full and partial runs
  • Used both full and partial runs for training but only used full runs for testing/inference
  • Training submaps are found in the folder "pointcloud_20m_10overlap/" and its corresponding csv file is "pointcloud_locations_20m_10overlap.csv"
  • Training submaps are not mutually disjoint per run
  • Each training submap ~20m of car trajectory and subsequent submaps are ~10m apart
  • Test/Inference submaps found in the folder "pointcloud_20m/" and its corresponding csv file is "pointcloud_locations_20m.csv"
  • Test/Inference submaps are mutually disjoint

NUS (Inhouse) Datasets

  • Each inhouse dataset has 5 runs
  • Training submaps are found in the folder "pointcloud_25m_10/" and its corresponding csv file is "pointcloud_centroids_10.csv"
  • Test/Infenrence submaps are found in the folder "pointcloud_25m_25/" and its corresponding csv file is "pointcloud_centroids_25.csv"
  • Training submaps are not mutually disjoint per run but test submaps are

Project Code

Pre-requisites

  • Python
  • CUDA
  • Tensorflow
  • Scipy
  • Pandas
  • Sklearn

Code was tested using Python 3 on Tensorflow 1.4.0 with CUDA 8.0

sudo apt-get install python3-pip python3-dev python-virtualenv
virtualenv --system-site-packages -p python3 ~/tensorflow
source ~/tensorflow/bin/activate
easy_install -U pip
pip3 install --upgrade tensorflow-gpu==1.4.0
pip install scipy, pandas, sklearn

Dataset set-up

Download the zip file of the benchmark datasets found here. Extract the folder on the same directory as the project code. Thus, on that directory you must have two folders: 1) benchmark_datasets/ and 2) pointnetvlad/

Generate pickle files

We store the positive and negative point clouds to each anchor on pickle files that are used in our training and evaluation codes. The files only need to be generated once. The generation of these files may take a few minutes.

cd generating_queries/ 

# For training tuples in our baseline network
python generate_training_tuples_baseline.py

# For training tuples in our refined network
python generate_training_tuples_refine.py

# For network evaluation
python generate_test_sets.py

Model Training and Evaluation

To train our network, run the following command:

python train_pointnetvlad.py

To evaluate the model, run the following command:

python evaluate.py

Pre-trained Models

The pre-trained models for both the baseline and refined networks can be downloaded here

Submap generation

Added the rough MATLAB code that was used for submap generation upon requests. Some functions are gotten from the toolbox of Oxford Robotcar.

Some clarification: The voxel grid filter was used to downsample the cloud to 4096, which was done by selecting a leaf size that initially downsamples the cloud close to 4096 points, after which we randomly add points to make the cloud have exactly 4096 points. Please feel free to send me an email ([email protected]) for any further questions.

License

This repository is released under MIT License (see LICENSE file for details).

Owner
Mikaela Uy
CS PhD Student
Mikaela Uy
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

Karbo 45 Dec 21, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line

NAVER/LINE Vision 357 Jan 04, 2023
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023