PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

Overview

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition CVPR 2018, Salt Lake City, USA

Mikaela Angelina Uy and Gim Hee Lee

National University of Singapore

pic-network

Introduction

The PointNetVLAD is a deep network that addresses the problem of large-scale place recognition through point cloud based retrieval. The arXiv version of PointNetVLAD can be found here.

@inproceedings{uy2018pointnetvlad,
      title={PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition},
      author={Uy, Mikaela Angelina and Lee, Gim Hee},
      booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
      year={2018}
}

Benchmark Datasets

The benchmark datasets introdruced in this work can be downloaded here.

  • All submaps are in binary file format
  • Ground truth GPS coordinate of the submaps are found in the corresponding csv files for each run
  • Filename of the submaps are their timestamps which is consistent with the timestamps in the csv files
  • Use CSV files to define positive and negative point clouds
  • All submaps are preprocessed with the road removed and downsampled to 4096 points

Oxford Dataset

  • 45 sets in total of full and partial runs
  • Used both full and partial runs for training but only used full runs for testing/inference
  • Training submaps are found in the folder "pointcloud_20m_10overlap/" and its corresponding csv file is "pointcloud_locations_20m_10overlap.csv"
  • Training submaps are not mutually disjoint per run
  • Each training submap ~20m of car trajectory and subsequent submaps are ~10m apart
  • Test/Inference submaps found in the folder "pointcloud_20m/" and its corresponding csv file is "pointcloud_locations_20m.csv"
  • Test/Inference submaps are mutually disjoint

NUS (Inhouse) Datasets

  • Each inhouse dataset has 5 runs
  • Training submaps are found in the folder "pointcloud_25m_10/" and its corresponding csv file is "pointcloud_centroids_10.csv"
  • Test/Infenrence submaps are found in the folder "pointcloud_25m_25/" and its corresponding csv file is "pointcloud_centroids_25.csv"
  • Training submaps are not mutually disjoint per run but test submaps are

Project Code

Pre-requisites

  • Python
  • CUDA
  • Tensorflow
  • Scipy
  • Pandas
  • Sklearn

Code was tested using Python 3 on Tensorflow 1.4.0 with CUDA 8.0

sudo apt-get install python3-pip python3-dev python-virtualenv
virtualenv --system-site-packages -p python3 ~/tensorflow
source ~/tensorflow/bin/activate
easy_install -U pip
pip3 install --upgrade tensorflow-gpu==1.4.0
pip install scipy, pandas, sklearn

Dataset set-up

Download the zip file of the benchmark datasets found here. Extract the folder on the same directory as the project code. Thus, on that directory you must have two folders: 1) benchmark_datasets/ and 2) pointnetvlad/

Generate pickle files

We store the positive and negative point clouds to each anchor on pickle files that are used in our training and evaluation codes. The files only need to be generated once. The generation of these files may take a few minutes.

cd generating_queries/ 

# For training tuples in our baseline network
python generate_training_tuples_baseline.py

# For training tuples in our refined network
python generate_training_tuples_refine.py

# For network evaluation
python generate_test_sets.py

Model Training and Evaluation

To train our network, run the following command:

python train_pointnetvlad.py

To evaluate the model, run the following command:

python evaluate.py

Pre-trained Models

The pre-trained models for both the baseline and refined networks can be downloaded here

Submap generation

Added the rough MATLAB code that was used for submap generation upon requests. Some functions are gotten from the toolbox of Oxford Robotcar.

Some clarification: The voxel grid filter was used to downsample the cloud to 4096, which was done by selecting a leaf size that initially downsamples the cloud close to 4096 points, after which we randomly add points to make the cloud have exactly 4096 points. Please feel free to send me an email ([email protected]) for any further questions.

License

This repository is released under MIT License (see LICENSE file for details).

Owner
Mikaela Uy
CS PhD Student
Mikaela Uy
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

风纪委员会自动投票 本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧! 如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请 投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,

Pesy Wu 25 Feb 17, 2021
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Rethinking Spatial Dimensions of Vision Transformers Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper NAVER

NAVER AI 224 Dec 27, 2022