Open source single image super-resolution toolbox containing various functionality for training a diverse number of state-of-the-art super-resolution models. Also acts as the companion code for the IEEE signal processing letters paper titled 'Improving Super-Resolution Performance using Meta-Attention Layers’.

Overview

Deep-FIR Codebase - Super Resolution Meta Attention Networks macOS Linux Windows License: GPL v3

About

This repository contains the main coding framework accompanying our work on meta-attention in Single Image Super-Resolution (SISR), which has been published in the IEEE Signal Processing Letters (SPL) here. A sample of the results obtained by our metadata-enhanced models is provided below:

training_system

Installation

Python and Virtual Environments

If installing from scratch, it is first recommended to set up a new Python virtual environment prior to installing this code. With Conda, this can be achieved through the following:

conda create -n *environment_name* python=3.7 (Python 3.7 recommended but not essential).

conda activate *environment_name*

Code testing was conducted in Python 3.7, but the code should work fine with Python 3.6+.

Local Installation

Run the following commands from the repo base directory to fully install the package and all requirements:

cd Code

If using CPU only: conda install --file requirements.txt --channel pytorch --channel conda-forge

If using CPU + GPU: First install Pytorch and Cudatoolkit for your specific configuration using instructions here. Then, install requirements as above.

If using Aim for metrics logging, install via pip install aim. The Aim GUI does not work on Windows, but metrics should still be logged in the .aim folder.

Finally:

pip install -e . This installs all the command-line functions from Code/setup.py.

All functionality has been tested on Linux (CPU & GPU), Mac OS (CPU) and Windows (CPU & GPU).

Requirements installation is only meant as a guide and all requirements can be installed using alternative means (e.g. using pip).

Guidelines for Generating SR Data

Setting up CelebA Dataset

Create a folder 'celeba' in the Data directory. In here, download all files from the celeba source.
Unpack all archives in this location. Run image_manipulate to generate LR images and corresponding metadata (check details in Documentation/data_prep.md for more info on how to do this).

Setting up CelebA-HQ Dataset

CelebA-HQ files can be easily downloaded from here. To generate LR images, check Documentation/data_prep.md as with CelebA. For our IEEE SPL paper (super-resolving by 4x), we generated images using the following two commands:

To generate 512x512 HR images: image_manipulate --source_dir *path_to_original_images* --output_dir *path_to_new_folder* --pipeline downscale --scale 2

To generate 128x128 LR images: image_manipulate --source_dir *path_to_512x512_images* --output_dir *path_to_new_folder* --pipeline blur-downscale --scale 4

To generate pre-upscaled 512x512 LR images for SPARNet: image_manipulate --source_dir *path_to_128x128_images* --output_dir *path_to_new_folder* --pipeline upscale --scale 4

Setting up DIV2K/Flickr2K Datasets

DIV2K training/validation downloadable from here.
Flickr2K dataset downloadable from here.

Similar to CelebA-HQ, for our IEEE SPL paper (super-resolving by 4x), we generated LR images using the following command:

image_manipulate --source_dir *path_to_original_HR_images* --output_dir *path_to_new_folder* --pipeline blur-downscale --scale 4

For blurred & compressed images, we used the following command (make sure to first install JM to be able to compress the images, as detailed here):

image_manipulate --source_dir *path_to_original_HR_images* --output_dir *path_to_new_folder* --pipeline blur-downscale-jm_compress --scale 4 --random_compression

Setting up SR testing Datasets

All SR testing datasets are available for download from the LapSRN main page here. Generate LR versions of each image using the same commands as used for the DIV2K/Flickr2K datasets.

Additional Options

Further detail on generating LR data provided in Documentation/data_prep.md.

Training/Evaluating Models

Training

To train models, prepare a configuration file (details in Documentation/model_training.md) and run:

train_sisr --parameters *path_to_config_file*

Evaluation

Similarly, for evaluation, prepare an eval config file (details in Documentation/model_eval.md) and run:

eval_sisr --config *path_to_config_file*

Standard SISR models available (code for each adapted from their official repository - linked within source code):

  1. SRCNN
  2. VDSR
  3. EDSR
  4. RCAN
  5. SPARNet
  6. SFTMD
  7. SRMD
  8. SAN
  9. HAN

Custom models available (all meta-models are marked with a Q-):

  1. Q-RCAN (meta-RCAN)
  2. Q-EDSR
  3. Q-SAN
  4. Q-HAN
  5. Q-SPARNet
  6. Various SFTMD variants (check SFTMD architectures file for options)

IEEE SPL Pre-Trained Model Weights

All weights for the models presented in our paper are available for download here. The models are split into three folders:

  • Models trained on blurry general images: These models were all trained on DIV2K/Flickr2K blurred/downsampled images. These include:
    • SRMD
    • SFTMD
    • RCAN
    • EDSR
    • SAN
    • HAN
    • Meta-RCAN
    • Meta-EDSR
    • Meta-SAN
    • Meta-HAN
  • Models trained on blurry and compressed general images: These models were all trained on DIV2K/Flickr2K blurred/downsampled/compressed images. These include:
    • RCAN
    • Meta-RCAN (accepting blur kernel data only)
    • Meta-RCAN (accepting compression QPI data only)
    • Meta-RCAN (accepting both blur kernels and compression QPI)
  • Models trained on blurry face images: These models were all trained on CelebA-HQ blurred/downsampled images. These include:
    • RCAN
    • SPARNet (note that SPARNET only accepts pre-upsampled images)
    • Meta-RCAN
    • Meta-SPARNet
  • Testing config files for all of these models are available in Documentation/SPL_testing_files. To use these, you need to first download and prepare the relevant datasets as shown here. Place the downloaded model folders in ./Results to use the config files as is, or adjust the model_loc parameter to point towards the directory containing the models.

Once downloaded, these models can be used directly with the eval command (```eval_sisr``) on any other input dataset as discussed in the evaluation documentation (Documentation/model_eval.md).

Replicating SPL Results from Scratch

All training config files for models presented in our SPL paper are provided in Documentation/sample_config_files. These configurations assume that your training/eval data is stored in the relevant directory within ./Data, so please check that you have downloaded and prepared your datasets (as detailed above) before training.

Additional/Advanced Setup

Setting up JM (for compressing images)

Download the reference software from here. Place the software in the directory ./JM. cd into this directory and compile the software using the commands . unixprep.sh and make. Some changes might be required for different OS versions.
To compress images, simply add the jm_compress argument when specifying image_manipulate's pipeline.

Setting up VGGFace (Pytorch)

Download pre-trained weights for the VGGFace model from here (scroll to VGGFace). Place the weights file in the directory ./external_packages/VGGFace/. The weights file should be called vgg_face_dag.pth.

Setting up lightCNN

Download pre-trained weights for the lightCNN model from here (LightCNN-29 v1). Place the weights file in the directory ./external_packages/LightCNN/. The weights file should be called LightCNN_29Layers_checkpoint.pth.tar.

Creating Custom Models

Information on how to develop and train your own models is available in Documentation/framework_development.md.

Full List of Commands Available

The entire list of commands available with this repository is:

  • train_sisr - main model training function.
  • eval_sisr - main model evaluation function.
  • image_manipulate - main bulk image converter.
  • images_to_video - Helper function to convert a folder of images into a video.
  • extract_best_model - Helper function to extract model config and best model checkpoint from a folder to a target location.
  • clean_models - Helper function to remove unnecessary model checkpoints.
  • model_report - Helper function to report on models available in specified directory.

Each command can be run with the --help parameter, which will print out the available options and docstrings.

Uninstall

Simply run:

pip uninstall Deep-FIR-SR

from any directory, with the relevant virtual environment activated.

Citation

Paper currently still in early-access, will update once fully published.

@ARTICLE{Meta-Attention,
author={Aquilina, Matthew and Galea, Christian and Abela, John and Camilleri, Kenneth P. and Farrugia, Reuben},
journal={IEEE Signal Processing Letters},
title={Improving Super-Resolution Performance using Meta-Attention Layers},
year={2021},
volume={},
number={},
pages={1-1},
doi={10.1109/LSP.2021.3116518}}

License/Further Development

This code has been released via the GNU GPLv3 open-source license. However, this code can also be made available via an alternative closed, permissive license. Third-parties interested in this form of licensing should contact us separately.

Usages of code from other repositories is properly referenced within the code itself.

We are working on a number of different research tasks in super-resolution, we'll be updating this repo as we make further advancements!

Short-term upgrades planned:

  • CI automated testing (alongside Pytest)
  • Release of packaged version
  • Other upgrades TBA
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

88 Nov 22, 2022
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022