Open source single image super-resolution toolbox containing various functionality for training a diverse number of state-of-the-art super-resolution models. Also acts as the companion code for the IEEE signal processing letters paper titled 'Improving Super-Resolution Performance using Meta-Attention Layers’.

Overview

Deep-FIR Codebase - Super Resolution Meta Attention Networks macOS Linux Windows License: GPL v3

About

This repository contains the main coding framework accompanying our work on meta-attention in Single Image Super-Resolution (SISR), which has been published in the IEEE Signal Processing Letters (SPL) here. A sample of the results obtained by our metadata-enhanced models is provided below:

training_system

Installation

Python and Virtual Environments

If installing from scratch, it is first recommended to set up a new Python virtual environment prior to installing this code. With Conda, this can be achieved through the following:

conda create -n *environment_name* python=3.7 (Python 3.7 recommended but not essential).

conda activate *environment_name*

Code testing was conducted in Python 3.7, but the code should work fine with Python 3.6+.

Local Installation

Run the following commands from the repo base directory to fully install the package and all requirements:

cd Code

If using CPU only: conda install --file requirements.txt --channel pytorch --channel conda-forge

If using CPU + GPU: First install Pytorch and Cudatoolkit for your specific configuration using instructions here. Then, install requirements as above.

If using Aim for metrics logging, install via pip install aim. The Aim GUI does not work on Windows, but metrics should still be logged in the .aim folder.

Finally:

pip install -e . This installs all the command-line functions from Code/setup.py.

All functionality has been tested on Linux (CPU & GPU), Mac OS (CPU) and Windows (CPU & GPU).

Requirements installation is only meant as a guide and all requirements can be installed using alternative means (e.g. using pip).

Guidelines for Generating SR Data

Setting up CelebA Dataset

Create a folder 'celeba' in the Data directory. In here, download all files from the celeba source.
Unpack all archives in this location. Run image_manipulate to generate LR images and corresponding metadata (check details in Documentation/data_prep.md for more info on how to do this).

Setting up CelebA-HQ Dataset

CelebA-HQ files can be easily downloaded from here. To generate LR images, check Documentation/data_prep.md as with CelebA. For our IEEE SPL paper (super-resolving by 4x), we generated images using the following two commands:

To generate 512x512 HR images: image_manipulate --source_dir *path_to_original_images* --output_dir *path_to_new_folder* --pipeline downscale --scale 2

To generate 128x128 LR images: image_manipulate --source_dir *path_to_512x512_images* --output_dir *path_to_new_folder* --pipeline blur-downscale --scale 4

To generate pre-upscaled 512x512 LR images for SPARNet: image_manipulate --source_dir *path_to_128x128_images* --output_dir *path_to_new_folder* --pipeline upscale --scale 4

Setting up DIV2K/Flickr2K Datasets

DIV2K training/validation downloadable from here.
Flickr2K dataset downloadable from here.

Similar to CelebA-HQ, for our IEEE SPL paper (super-resolving by 4x), we generated LR images using the following command:

image_manipulate --source_dir *path_to_original_HR_images* --output_dir *path_to_new_folder* --pipeline blur-downscale --scale 4

For blurred & compressed images, we used the following command (make sure to first install JM to be able to compress the images, as detailed here):

image_manipulate --source_dir *path_to_original_HR_images* --output_dir *path_to_new_folder* --pipeline blur-downscale-jm_compress --scale 4 --random_compression

Setting up SR testing Datasets

All SR testing datasets are available for download from the LapSRN main page here. Generate LR versions of each image using the same commands as used for the DIV2K/Flickr2K datasets.

Additional Options

Further detail on generating LR data provided in Documentation/data_prep.md.

Training/Evaluating Models

Training

To train models, prepare a configuration file (details in Documentation/model_training.md) and run:

train_sisr --parameters *path_to_config_file*

Evaluation

Similarly, for evaluation, prepare an eval config file (details in Documentation/model_eval.md) and run:

eval_sisr --config *path_to_config_file*

Standard SISR models available (code for each adapted from their official repository - linked within source code):

  1. SRCNN
  2. VDSR
  3. EDSR
  4. RCAN
  5. SPARNet
  6. SFTMD
  7. SRMD
  8. SAN
  9. HAN

Custom models available (all meta-models are marked with a Q-):

  1. Q-RCAN (meta-RCAN)
  2. Q-EDSR
  3. Q-SAN
  4. Q-HAN
  5. Q-SPARNet
  6. Various SFTMD variants (check SFTMD architectures file for options)

IEEE SPL Pre-Trained Model Weights

All weights for the models presented in our paper are available for download here. The models are split into three folders:

  • Models trained on blurry general images: These models were all trained on DIV2K/Flickr2K blurred/downsampled images. These include:
    • SRMD
    • SFTMD
    • RCAN
    • EDSR
    • SAN
    • HAN
    • Meta-RCAN
    • Meta-EDSR
    • Meta-SAN
    • Meta-HAN
  • Models trained on blurry and compressed general images: These models were all trained on DIV2K/Flickr2K blurred/downsampled/compressed images. These include:
    • RCAN
    • Meta-RCAN (accepting blur kernel data only)
    • Meta-RCAN (accepting compression QPI data only)
    • Meta-RCAN (accepting both blur kernels and compression QPI)
  • Models trained on blurry face images: These models were all trained on CelebA-HQ blurred/downsampled images. These include:
    • RCAN
    • SPARNet (note that SPARNET only accepts pre-upsampled images)
    • Meta-RCAN
    • Meta-SPARNet
  • Testing config files for all of these models are available in Documentation/SPL_testing_files. To use these, you need to first download and prepare the relevant datasets as shown here. Place the downloaded model folders in ./Results to use the config files as is, or adjust the model_loc parameter to point towards the directory containing the models.

Once downloaded, these models can be used directly with the eval command (```eval_sisr``) on any other input dataset as discussed in the evaluation documentation (Documentation/model_eval.md).

Replicating SPL Results from Scratch

All training config files for models presented in our SPL paper are provided in Documentation/sample_config_files. These configurations assume that your training/eval data is stored in the relevant directory within ./Data, so please check that you have downloaded and prepared your datasets (as detailed above) before training.

Additional/Advanced Setup

Setting up JM (for compressing images)

Download the reference software from here. Place the software in the directory ./JM. cd into this directory and compile the software using the commands . unixprep.sh and make. Some changes might be required for different OS versions.
To compress images, simply add the jm_compress argument when specifying image_manipulate's pipeline.

Setting up VGGFace (Pytorch)

Download pre-trained weights for the VGGFace model from here (scroll to VGGFace). Place the weights file in the directory ./external_packages/VGGFace/. The weights file should be called vgg_face_dag.pth.

Setting up lightCNN

Download pre-trained weights for the lightCNN model from here (LightCNN-29 v1). Place the weights file in the directory ./external_packages/LightCNN/. The weights file should be called LightCNN_29Layers_checkpoint.pth.tar.

Creating Custom Models

Information on how to develop and train your own models is available in Documentation/framework_development.md.

Full List of Commands Available

The entire list of commands available with this repository is:

  • train_sisr - main model training function.
  • eval_sisr - main model evaluation function.
  • image_manipulate - main bulk image converter.
  • images_to_video - Helper function to convert a folder of images into a video.
  • extract_best_model - Helper function to extract model config and best model checkpoint from a folder to a target location.
  • clean_models - Helper function to remove unnecessary model checkpoints.
  • model_report - Helper function to report on models available in specified directory.

Each command can be run with the --help parameter, which will print out the available options and docstrings.

Uninstall

Simply run:

pip uninstall Deep-FIR-SR

from any directory, with the relevant virtual environment activated.

Citation

Paper currently still in early-access, will update once fully published.

@ARTICLE{Meta-Attention,
author={Aquilina, Matthew and Galea, Christian and Abela, John and Camilleri, Kenneth P. and Farrugia, Reuben},
journal={IEEE Signal Processing Letters},
title={Improving Super-Resolution Performance using Meta-Attention Layers},
year={2021},
volume={},
number={},
pages={1-1},
doi={10.1109/LSP.2021.3116518}}

License/Further Development

This code has been released via the GNU GPLv3 open-source license. However, this code can also be made available via an alternative closed, permissive license. Third-parties interested in this form of licensing should contact us separately.

Usages of code from other repositories is properly referenced within the code itself.

We are working on a number of different research tasks in super-resolution, we'll be updating this repo as we make further advancements!

Short-term upgrades planned:

  • CI automated testing (alongside Pytest)
  • Release of packaged version
  • Other upgrades TBA
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties

Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties 8.11.2021 Andrij Vasylenko I

Leverhulme Research Centre for Functional Materials Design 4 Dec 20, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022