Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

Related tags

Deep LearningConfGF
Overview

ConfGF


License: MIT

[PDF] | [Slides]

The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk)

Installation

Install via Conda (Recommended)

# Clone the environment
conda env create -f env.yml

# Activate the environment
conda activate confgf

# Install Library
git clone https://github.com/DeepGraphLearning/ConfGF.git
cd ConfGF
python setup.py install

Install Manually

# Create conda environment
conda create -n confgf python=3.7

# Activate the environment
conda activate confgf

# Install packages
conda install -y -c pytorch pytorch=1.7.0 torchvision torchaudio cudatoolkit=10.2
conda install -y -c rdkit rdkit==2020.03.2.0
conda install -y scikit-learn pandas decorator ipython networkx tqdm matplotlib
conda install -y -c conda-forge easydict
pip install pyyaml

# Install PyTorch Geometric
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.7.0+cu102.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.7.0+cu102.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.7.0+cu102.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.7.0+cu102.html
pip install torch-geometric==1.6.3

# Install Library
git clone https://github.com/DeepGraphLearning/ConfGF.git
cd ConfGF
python setup.py install

Dataset

Offical Dataset

The offical raw GEOM dataset is avaiable [here].

Preprocessed dataset

We provide the preprocessed datasets (GEOM, ISO17) in a [google drive folder]. For ISO17 dataset, we use the default split of [GraphDG].

Prepare your own GEOM dataset from scratch (optional)

Download the raw GEOM dataset and unpack it.

tar xvf ~/rdkit_folder.tar.gz -C ~/GEOM

Preprocess the raw GEOM dataset.

python script/process_GEOM_dataset.py --base_path GEOM --dataset_name qm9 --confmin 50 --confmax 500
python script/process_GEOM_dataset.py --base_path GEOM --dataset_name drugs --confmin 50 --confmax 100

The final folder structure will look like this:

GEOM
|___rdkit_folder  # raw dataset
|   |___qm9 # raw qm9 dataset
|   |___drugs # raw drugs dataset
|   |___summary_drugs.json
|   |___summary_qm9.json
|   
|___qm9_processed
|   |___train_data_40k.pkl
|   |___val_data_5k.pkl
|   |___test_data_200.pkl
|   
|___drugs_processed
|   |___train_data_39k.pkl
|   |___val_data_5k.pkl
|   |___test_data_200.pkl
|
iso17_processed
|___iso17_split-0_train_processed.pkl
|___iso17_split-0_test_processed.pkl
|
...

Training

All hyper-parameters and training details are provided in config files (./config/*.yml), and free feel to tune these parameters.

You can train the model with the following commands:

python -u script/train.py --config_path ./config/qm9_default.yml
python -u script/train.py --config_path ./config/drugs_default.yml
python -u script/train.py --config_path ./config/iso17_default.yml

The checkpoint of the models will be saved into a directory specified in config files.

Generation

We provide the checkpoints of three trained models, i.e., qm9_default, drugs_default and iso17_default in a [google drive folder].

You can generate conformations of a molecule by feeding its SMILES into the model:

python -u script/gen.py --config_path ./config/qm9_default.yml --generator ConfGF --smiles c1ccccc1
python -u script/gen.py --config_path ./config/qm9_default.yml --generator ConfGFDist --smiles c1ccccc1

Here we use the models trained on GEOM-QM9 to generate conformations for the benzene. The argument --generator indicates the type of the generator, i.e., ConfGF vs. ConfGFDist. See the ablation study (Table 5) in the original paper for more details.

You can also generate conformations for an entire test set.

python -u script/gen.py --config_path ./config/qm9_default.yml --generator ConfGF \
                        --start 0 --end 200 \

python -u script/gen.py --config_path ./config/qm9_default.yml --generator ConfGFDist \
                        --start 0 --end 200 \

python -u script/gen.py --config_path ./config/drugs_default.yml --generator ConfGF \
                        --start 0 --end 200 \

python -u script/gen.py --config_path ./config/drugs_default.yml --generator ConfGFDist \
                        --start 0 --end 200 \

Here start and end indicate the range of the test set that we want to use. All hyper-parameters related to generation can be set in config files.

Conformations of some drug-like molecules generated by ConfGF are provided below.

Get Results

The results of all benchmark tasks can be calculated based on generated conformations.

We report the results of each task in the following tables. Results of ConfGF and ConfGFDist are re-evaluated based on the current code base, which successfully reproduce the results reported in the original paper. Results of other models are taken directly from the original paper.

Task 1. Conformation Generation

The COV and MAT scores on the GEOM datasets can be calculated using the following commands:

python -u script/get_task1_results.py --input dir_of_QM9_samples --core 10 --threshold 0.5  

python -u script/get_task1_results.py --input dir_of_Drugs_samples --core 10 --threshold 1.25  

Table: COV and MAT scores on GEOM-QM9

QM9 COV-Mean (%) COV-Median (%) MAT-Mean (\AA) MAT-Median (\AA)
ConfGF 91.06 95.76 0.2649 0.2668
ConfGFDist 85.37 88.59 0.3435 0.3548
CGCF 78.05 82.48 0.4219 0.3900
GraphDG 73.33 84.21 0.4245 0.3973
CVGAE 0.09 0.00 1.6713 1.6088
RDKit 83.26 90.78 0.3447 0.2935

Table: COV and MAT scores on GEOM-Drugs

Drugs COV-Mean (%) COV-Median (%) MAT-Mean (\AA) MAT-Median (\AA)
ConfGF 62.54 71.32 1.1637 1.1617
ConfGFDist 49.96 48.12 1.2845 1.2827
CGCF 53.96 57.06 1.2487 1.2247
GraphDG 8.27 0.00 1.9722 1.9845
CVGAE 0.00 0.00 3.0702 2.9937
RDKit 60.91 65.70 1.2026 1.1252

Task 2. Distributions Over Distances

The MMD metrics on the ISO17 dataset can be calculated using the following commands:

python -u script/get_task2_results.py --input dir_of_ISO17_samples

Table: Distributions over distances

Method Single-Mean Single-Median Pair-Mean Pair-Median All-Mean All-Median
ConfGF 0.3430 0.2473 0.4195 0.3081 0.5432 0.3868
ConfGFDist 0.3348 0.2011 0.4080 0.2658 0.5821 0.3974
CGCF 0.4490 0.1786 0.5509 0.2734 0.8703 0.4447
GraphDG 0.7645 0.2346 0.8920 0.3287 1.1949 0.5485
CVGAE 4.1789 4.1762 4.9184 5.1856 5.9747 5.9928
RDKit 3.4513 3.1602 3.8452 3.6287 4.0866 3.7519

Visualizing molecules with PyMol

Start Setup

  1. pymol -R
  2. Display - Background - White
  3. Display - Color Space - CMYK
  4. Display - Quality - Maximal Quality
  5. Display Grid
    1. by object: use set grid_slot, int, mol_name to put the molecule into the corresponding slot
    2. by state: align all conformations in a single slot
    3. by object-state: align all conformations and put them in separate slots. (grid_slot dont work!)
  6. Setting - Line and Sticks - Ball and Stick on - Ball and Stick ratio: 1.5
  7. Setting - Line and Sticks - Stick radius: 0.2 - Stick Hydrogen Scale: 1.0

Show Molecule

  1. To show molecules

    1. hide everything
    2. show sticks
  2. To align molecules: align name1, name2

  3. Convert RDKit mol to Pymol

    from rdkit.Chem import PyMol
    v= PyMol.MolViewer()
    rdmol = Chem.MolFromSmiles('C')
    v.ShowMol(rdmol, name='mol')
    v.SaveFile('mol.pkl')

Make the trajectory for Langevin dynamics

  1. load a sequence of pymol objects named traj*.pkl into the PyMol, where traji.pkl is the i-th conformation in the trajectory.
  2. Join states: join_states mol, traj*, 0
  3. Delete useless object: delete traj*
  4. Movie - Program - State Loop - Full Speed
  5. Export the movie to a sequence of PNG files: File - Export Movie As - PNG Images
  6. Use photoshop to convert the PNG sequence to a GIF with the transparent background.

Citation

Please consider citing the following paper if you find our codes helpful. Thank you!

@inproceedings{shi*2021confgf,
title={Learning Gradient Fields for Molecular Conformation Generation},
author={Shi, Chence and Luo, Shitong and Xu, Minkai and Tang, Jian},
booktitle={International Conference on Machine Learning},
year={2021}
}

Contact

Chence Shi ([email protected])

Owner
MilaGraph
Research group led by Prof. Jian Tang at Mila-Quebec AI Institute (https://mila.quebec/) focusing on graph representation learning and graph neural networks.
MilaGraph
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022