Benchmarking the robustness of Spatial-Temporal Models

Overview

Benchmarking the robustness of Spatial-Temporal Models

This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal Models Against Corruptions.

Python 2.7 and 3.7, Pytorch 1.7+, FFmpeg are required.

Requirements

pip3 install - requirements.txt

Mini Kinetics-C

image info

Download original Kinetics400 from link.

The Mini Kinetics-C contains half of the classes in Kinetics400. All the classes can be found in mini-kinetics-200-classes.txt.

Mini Kinetics-C Leaderboard

Corruption robustness of spatial-temporal models trained on clean Mini Kinetics and evaluated on Mini Kinetics-C.

Approach Reference Backbone Input Length Sampling Method Clean Accuracy mPC rPC
TimeSformer Gedas et al. Transformer 32 Uniform 82.2 71.4 86.9
3D ResNet K. Hara et al. ResNet-50 32 Uniform 73.0 59.2 81.1
I3D J. Carreira et al. InceptionV1 32 Uniform 70.5 57.7 81.8
SlowFast 8x4 C. Feichtenhofer at al. ResNet-50 32 Uniform 69.2 54.3 78.5
3D ResNet K. Hara et al. ResNet-18 32 Uniform 66.2 53.3 80.5
TAM Q.Fan et al. ResNet-50 32 Uniform 66.9 50.8 75.9
X3D-M C. Feichtenhofer ResNet-50 32 Uniform 62.6 48.6 77.6

For fair comparison, it is recommended to submit the result of approach which follows the following settings: Backbone of ResNet-50, Input Length of 32, Uniform Sampling at Clip Level. Any result on our benchmark can be submitted via pull request.

Mini SSV2-C

image info

Download original Something-Something-V2 datset from link.

The Mini SSV2-C contains half of the classes in Something-Something-V2. All the classes can be found in mini-ssv2-87-classes.txt.

Mini SSV2-C Leaderboard

Corruption robustness of spatial-temporal models trained on clean Mini SSV2 and evaluated on Mini SSV2-C.

Approach Reference Backbone Input Length Sampling Method Clean Accuracy mPC rPC
TimeSformer Gedas et al. Transformer 16 Uniform 60.5 49.7 82.1
I3D J. Carreira et al. InceptionV1 32 Uniform 58.5 47.8 81.7
3D ResNet K. Hara et al. ResNet-50 32 Uniform 57.4 46.6 81.2
TAM Q.Fan et al. ResNet-50 32 Uniform 61.8 45.7 73.9
3D ResNet K. Hara et al. ResNet-18 32 Uniform 53.0 42.6 80.3
X3D-M C. Feichtenhofer ResNet-50 32 Uniform 49.9 40.7 81.6
SlowFast 8x4 C. Feichtenhofer at al. ResNet-50 32 Uniform 48.7 38.4 78.8

For fair comparison, it is recommended to submit the result of approach which follows the following settings: Backbone of ResNet-50, Input Length of 32, Uniform Sampling at Clip Level. Any result on our benchmark can be submitted via pull request.

Training and Evaluation

To help researchers reproduce the benchmark results provided in our leaderboard, we include a simple framework for training and evaluating the spatial-temporal models in the folder: benchmark_framework.

Running the code

Assume the structure of data directories is the following:

~/
  datadir/
    mini_kinetics/
      train/
        .../ (directories of class names)
          ...(hdf5 file containing video frames)
    mini_kinetics-c/
      .../ (directories of corruption names)
        .../ (directories of severity level)
          .../ (directories of class names)
            ...(hdf5 file containing video frames)

Train I3D on the Mini Kinetics dataset with 4 GPUs and 16 CPU threads (for data loading). The input lenght is 32, the batch size is 32 and learning rate is 0.01.

python3 train.py --threed_data --dataset mini_kinetics400 --frames_per_group 1 --groups 32 --logdir snapshots/ \
--lr 0.01 --backbone_net i3d -b 32 -j 16 --cuda 0,1,2,3

Test I3D on the Mini Kinetics-C dataset (pretrained model is loaded)

python3 test_corruption.py --threed_data --dataset mini_kinetics400 --frames_per_group 1 --groups 32 --logdir snapshots/ \
--pretrained snapshots/mini_kinetics400-rgb-i3d_v2-ts-max-f32-cosine-bs32-e50-v1/model_best.pth.tar --backbone_net i3d -b 32 -j 16 -e --cuda 0,1,2,3

Owner
Yi Chenyu Ian
Yi Chenyu Ian
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023