PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

Overview

IIM - Crowd Localization


This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is developed based on C3F. framework

Progress

  • Testing Code (2020.12.10)
  • Training Code
    • NWPU (2020.12.14)
    • JHU (2021.01.05)
    • UCF-QNRF (2020.12.30)
    • ShanghaiTech Part A/B (2020.12.29)
    • FDST (2020.12.30)
  • scale information for UCF-QNRF and ShanghaiTech Part A/B (2021.01.07)

Getting Started

Preparation

  • Prerequisites

    • Python 3.7
    • Pytorch 1.6: http://pytorch.org .
    • other libs in requirements.txt, run pip install -r requirements.txt.
  • Code

  • Datasets

    • Download NWPU-Crowd dataset from this link.

    • Unzip *zip files in turns and place images_part* into the same folder (Root/ProcessedData/NWPU/images).

    • Download the processing labels and val gt file from this link. Place them into Root/ProcessedData/NWPU/masks and Root/ProcessedData/NWPU, respectively.

    • If you want to reproduce the results on Shanghai Tech Part A/B , UCF-QNRF, and JHU datasets, you can follow the instructions in DATA.md to setup the datasets.

    • Finally, the folder tree is below:

   -- ProcessedData
   	|-- NWPU
   		|-- images
   		|   |-- 0001.jpg
   		|   |-- 0002.jpg
   		|   |-- ...
   		|   |-- 5109.jpg
   		|-- masks
   		|   |-- 0001.png
   		|   |-- 0002.png
   		|   |-- ...
   		|   |-- 3609.png
   		|-- train.txt
   		|-- val.txt
   		|-- test.txt
   		|-- val_gt_loc.txt
   -- PretrainedModels
     |-- hrnetv2_w48_imagenet_pretrained.pth
   -- IIM
     |-- datasets
     |-- misc
     |-- ...

Training

  • run python train.py.
  • run tensorboard --logdir=exp --port=6006.
  • The validtion records are shown as follows: val_curve
  • The sub images are the input image, GT, prediction map,localization result, and pixel-level threshold, respectively: val_curve

Tips: The training process takes ~50 hours on NWPU datasets with two TITAN RTX (48GB Memeory).

Testing and Submitting

  • Modify some key parameters in test.py:
    • netName.
    • model_path.
  • Run python test.py. Then the output file (*_*_test.txt) will be generated, which can be directly submitted to CrowdBenchmark

Visualization on the val set

  • Modify some key parameters in test.py:
    • test_list = 'val.txt'
    • netName.
    • model_path.
  • Run python test.py. Then the output file (*_*_val.txt) will be generated.
  • Modify some key parameters in vis4val.py:
    • pred_file.
  • Run python vis4val.py.

Performance

The results (F1, Pre., Rec. under the sigma_l) and pre-trained models on NWPU val set, UCF-QNRF, SHT A, SHT B, and FDST:

Method NWPU val UCF-QNRF SHT A
Paper: VGG+FPN [2,3] 77.0/80.2/74.1 68.8/78.2/61.5 72.5/72.6/72.5
This Repo's Reproduction: VGG+FPN [2,3] 77.1/82.5/72.3 67.8/75.7/61.5 71.6/75.9/67.8
Paper: HRNet [1] 80.2/84.1/76.6 72.0/79.3/65.9 73.9/79.8/68.7
This Repo's Reproduction: HRNet [1] 79.8/83.4/76.5 72.0/78.7/66.4 76.1/79.1/73.3
Method SHT B FDST JHU
Paper: VGG+FPN [2,3] 80.2/84.9/76.0 93.1/92.7/93.5 -
This Repo's Reproduction: VGG+FPN [2,3] 81.7/88.5/75.9 93.9/94.7/93.1 61.8/73.2/53.5
Paper: HRNet [1] 86.2/90.7/82.1 95.5/95.3/95.8 62.5/74.0/54.2
This Repo's Reproduction: HRNet [1] 86.0/91.5/81.0 95.7/96.9 /94.4 64.0/73.3/56.8

References

  1. Deep High-Resolution Representation Learning for Visual Recognition, T-PAMI, 2019.
  2. Very Deep Convolutional Networks for Large-scale Image Recognition, arXiv, 2014.
  3. Feature Pyramid Networks for Object Detection, CVPR, 2017.

About the leaderboard on the test set, please visit Crowd benchmark. Our submissions are the IIM(HRNet) and IIM (VGG16).

Video Demo

We test the pretrained HR Net model on the NWPU dataset in a real-world subway scene. Please visit bilibili or YouTube to watch the video demonstration. val_curve

Citation

If you find this project is useful for your research, please cite:

@article{gao2020learning,
  title={Learning Independent Instance Maps for Crowd Localization},
  author={Gao, Junyu and Han, Tao and Yuan, Yuan and Wang, Qi},
  journal={arXiv preprint arXiv:2012.04164},
  year={2020}
}

Our code borrows a lot from the C^3 Framework, and you may cite:

@article{gao2019c,
  title={C$^3$ Framework: An Open-source PyTorch Code for Crowd Counting},
  author={Gao, Junyu and Lin, Wei and Zhao, Bin and Wang, Dong and Gao, Chenyu and Wen, Jun},
  journal={arXiv preprint arXiv:1907.02724},
  year={2019}
}

If you use pre-trained models in this repo (HR Net, VGG, and FPN), please cite them.

Owner
tao han
tao han
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
Official Implementation of "Transformers Can Do Bayesian Inference"

Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var

AutoML-Freiburg-Hannover 103 Dec 25, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 04, 2023
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022