Face Transformer for Recognition

Overview

Face-Transformer

This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2).

Recently there has been great interests of Transformer not only in NLP but also in computer vision. We wonder if transformer can be used in face recognition and whether it is better than CNNs. Therefore, we investigate the performance of Transformer models in face recognition. The models are trained on a large scale face recognition database MS-Celeb-1M and evaluated on several mainstream benchmarks, including LFW, SLLFW, CALFW, CPLFW, TALFW, CFP-FP, AGEDB and IJB-C databases. We demonstrate that Transformer models achieve comparable performance as CNN with similar number of parameters and MACs.

arch

Usage Instructions

1. Preparation

The code is mainly adopted from Vision Transformer, and DeiT. In addition to PyTorch and torchvision, install vit_pytorch by Phil Wang, and package timm==0.3.2 by Ross Wightman. Sincerely appreciate for their contributions.

pip install vit-pytorch
pip install timm==0.3.2

Copy the files of fold "copy-to-vit_pytorch-path" to vit-pytorch path.

.
├── __init__.py
├── vit_face.py
└── vits_face.py

2. Databases

You can download the training databases, MS-Celeb-1M (version ms1m-retinaface), and put it in folder 'Data'.

You can download the testing databases as follows and put them in folder 'eval'.

3. Train Models

  • ViT-P8S8
CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VIT -head CosFace --outdir ./results/ViT-P8S8_ms1m_cosface_s1 --warmup-epochs 1 --lr 3e-4 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VIT -head CosFace --outdir ./results/ViT-P8S8_ms1m_cosface_s2 --warmup-epochs 0 --lr 1e-4 -r path_to_model 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VIT -head CosFace --outdir ./results/ViT-P8S8_ms1m_cosface_s3 --warmup-epochs 0 --lr 5e-5 -r path_to_model 
  • ViT-P12S8
CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VITs -head CosFace --outdir ./results/ViT-P12S8_ms1m_cosface_s1 --warmup-epochs 1 --lr 3e-4 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VITs -head CosFace --outdir ./results/ViT-P12S8_ms1m_cosface_s2 --warmup-epochs 0 --lr 1e-4 -r path_to_model 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VITs -head CosFace --outdir ./results/ViT-P12S8_ms1m_cosface_s3 --warmup-epochs 0 --lr 5e-5 -r path_to_model 

4. Pretrained Models and Test Models (on LFW, SLLFW, CALFW, CPLFW, TALFW, CFP_FP, AGEDB)

You can download the following models

You can test Models

python test.py --model ./results/ViT-P12S8_ms1m_cosface/Backbone_VITs_Epoch_2_Batch_12000_Time_2021-03-17-04-05_checkpoint.pth --network VIT 

python test.py --model ./results/ViT-P12S8_ms1m_cosface/Backbone_VITs_Epoch_2_Batch_12000_Time_2021-03-17-04-05_checkpoint.pth --network VITs 
Owner
Zhong Yaoyao
BUPT
Zhong Yaoyao
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"

Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat

Xavier Thomas 15 Sep 20, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022