Face Transformer for Recognition

Overview

Face-Transformer

This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2).

Recently there has been great interests of Transformer not only in NLP but also in computer vision. We wonder if transformer can be used in face recognition and whether it is better than CNNs. Therefore, we investigate the performance of Transformer models in face recognition. The models are trained on a large scale face recognition database MS-Celeb-1M and evaluated on several mainstream benchmarks, including LFW, SLLFW, CALFW, CPLFW, TALFW, CFP-FP, AGEDB and IJB-C databases. We demonstrate that Transformer models achieve comparable performance as CNN with similar number of parameters and MACs.

arch

Usage Instructions

1. Preparation

The code is mainly adopted from Vision Transformer, and DeiT. In addition to PyTorch and torchvision, install vit_pytorch by Phil Wang, and package timm==0.3.2 by Ross Wightman. Sincerely appreciate for their contributions.

pip install vit-pytorch
pip install timm==0.3.2

Copy the files of fold "copy-to-vit_pytorch-path" to vit-pytorch path.

.
├── __init__.py
├── vit_face.py
└── vits_face.py

2. Databases

You can download the training databases, MS-Celeb-1M (version ms1m-retinaface), and put it in folder 'Data'.

You can download the testing databases as follows and put them in folder 'eval'.

3. Train Models

  • ViT-P8S8
CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VIT -head CosFace --outdir ./results/ViT-P8S8_ms1m_cosface_s1 --warmup-epochs 1 --lr 3e-4 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VIT -head CosFace --outdir ./results/ViT-P8S8_ms1m_cosface_s2 --warmup-epochs 0 --lr 1e-4 -r path_to_model 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VIT -head CosFace --outdir ./results/ViT-P8S8_ms1m_cosface_s3 --warmup-epochs 0 --lr 5e-5 -r path_to_model 
  • ViT-P12S8
CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VITs -head CosFace --outdir ./results/ViT-P12S8_ms1m_cosface_s1 --warmup-epochs 1 --lr 3e-4 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VITs -head CosFace --outdir ./results/ViT-P12S8_ms1m_cosface_s2 --warmup-epochs 0 --lr 1e-4 -r path_to_model 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VITs -head CosFace --outdir ./results/ViT-P12S8_ms1m_cosface_s3 --warmup-epochs 0 --lr 5e-5 -r path_to_model 

4. Pretrained Models and Test Models (on LFW, SLLFW, CALFW, CPLFW, TALFW, CFP_FP, AGEDB)

You can download the following models

You can test Models

python test.py --model ./results/ViT-P12S8_ms1m_cosface/Backbone_VITs_Epoch_2_Batch_12000_Time_2021-03-17-04-05_checkpoint.pth --network VIT 

python test.py --model ./results/ViT-P12S8_ms1m_cosface/Backbone_VITs_Epoch_2_Batch_12000_Time_2021-03-17-04-05_checkpoint.pth --network VITs 
Owner
Zhong Yaoyao
BUPT
Zhong Yaoyao
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
PyQt6 configuration in yaml format providing the most simple script.

PyamlQt(ぴゃむるきゅーと) PyQt6 configuration in yaml format providing the most simple script. Requirements yaml PyQt6, ( PyQt5 ) Installation pip install Pya

Ar-Ray 7 Aug 15, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer

AdaConv Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer from "Adaptive Convolutions for Structure-

65 Dec 22, 2022
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023