A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

Overview

sne4onnx

A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want. Simple Network Extraction for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • If INPUT OP name and OUTPUT OP name are specified, the onnx graph within the range of the specified OP name is extracted and .onnx is generated.
  • Change backend to onnx.utils.Extractor.extract_model so that onnx.ModelProto can be specified as input.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& pip install -U sne4onnx

1-2. Docker

### docker pull
$ docker pull pinto0309/sne4onnx:latest

### docker build
$ docker build -t pinto0309/sne4onnx:latest .

### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/sne4onnx:latest
$ cd /workdir

2. CLI Usage

$ sne4onnx -h

usage:
    sne4onnx [-h]
    --input_onnx_file_path INPUT_ONNX_FILE_PATH
    --input_op_names INPUT_OP_NAMES
    --output_op_names OUTPUT_OP_NAMES
    [--output_onnx_file_path OUTPUT_ONNX_FILE_PATH]

optional arguments:
  -h, --help
        show this help message and exit

  --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.

  --input_op_names INPUT_OP_NAMES
        List of OP names to specify for the input layer of the model.
        Specify the name of the OP, separated by commas.
        e.g. --input_op_names aaa,bbb,ccc

  --output_op_names OUTPUT_OP_NAMES
        List of OP names to specify for the output layer of the model.
        Specify the name of the OP, separated by commas.
        e.g. --output_op_names ddd,eee,fff

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path. If not specified, extracted.onnx is output.

3. In-script Usage

$ python
>>> from sne4onnx import extraction
>>> help(extraction)

Help on function extraction in module sne4onnx.onnx_network_extraction:

extraction(
    input_op_names: List[str],
    output_op_names: List[str],
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_onnx_file_path: Union[str, NoneType] = ''
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_op_names: List[str]
        List of OP names to specify for the input layer of the model.
        Specify the name of the OP, separated by commas.
        e.g. ['aaa','bbb','ccc']

    output_op_names: List[str]
        List of OP names to specify for the output layer of the model.
        Specify the name of the OP, separated by commas.
        e.g. ['ddd','eee','fff']

    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If not specified, .onnx is not output.
        Default: ''

    Returns
    -------
    extracted_graph: onnx.ModelProto
        Extracted onnx ModelProto

4. CLI Execution

$ sne4onnx \
--input_onnx_file_path input.onnx \
--input_op_names aaa,bbb,ccc \
--output_op_names ddd,eee,fff \
--output_onnx_file_path output.onnx

5. In-script Execution

5-1. Use ONNX files

from sne4onnx import extraction

extracted_graph = extraction(
  input_op_names=['aaa', 'bbb', 'ccc'],
  output_op_names=['ddd', 'eee', 'fff'],
  input_onnx_file_path='input.onnx',
  output_onnx_file_path='output.onnx',
)

5-2. Use onnx.ModelProto

from sne4onnx import extraction

extracted_graph = extraction(
  input_op_names=['aaa', 'bbb', 'ccc'],
  output_op_names=['ddd', 'eee', 'fff'],
  onnx_graph=graph,
  output_onnx_file_path='output.onnx',
)

6. Samples

6-1. Pre-extraction

image image image

6-2. Extraction

$ sne4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280.onnx \
--input_op_names 0,1 \
--output_op_names 497,785 \
--output_onnx_file_path hitnet_sf_finalpass_720x960_head.onnx

6-3. Extracted

image image image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/PythonAPIOverview.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/snd4onnx
  5. https://github.com/PINTO0309/scs4onnx
  6. https://github.com/PINTO0309/snc4onnx
  7. https://github.com/PINTO0309/sog4onnx
  8. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

You might also like...
Parasite: a tool allowing you to compress and decompress files, to reduce their size
Parasite: a tool allowing you to compress and decompress files, to reduce their size

🦠 Parasite 🦠 Parasite is a tool written in Python3 allowing you to "compress" any file, reducing its size. ⭐ Features ⭐ + Fast + Good optimization,

🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runtime Web.

A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx]
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Music source separation is a task to separate audio recordings into individual sources

Music Source Separation Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmeme

Comments
  • Significantly faster processing

    Significantly faster processing

    1. https://github.com/PINTO0309/simple-onnx-processing-tools/issues/2
    2. Eliminate comma-separated specifications for input_op_names and output_op_names
    3. Add non_verbose option
    opened by PINTO0309 0
Releases(1.0.10)
  • 1.0.10(Sep 7, 2022)

    • Add short form parameter
    $ sne4onnx -h
    
    usage:
        sne4onnx [-h]
        -if INPUT_ONNX_FILE_PATH
        -ion INPUT_OP_NAMES
        -oon OUTPUT_OP_NAMES
        [-of OUTPUT_ONNX_FILE_PATH]
        [-n]
    
    optional arguments:
      -h, --help
        show this help message and exit
    
      -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.
    
      -ion INPUT_OP_NAMES [INPUT_OP_NAMES ...], --input_op_names INPUT_OP_NAMES [INPUT_OP_NAMES ...]
        List of OP names to specify for the input layer of the model.
        e.g. --input_op_names aaa bbb ccc
    
      -oon OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...], --output_op_names OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...]
        List of OP names to specify for the output layer of the model.
        e.g. --output_op_names ddd eee fff
    
      -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path. If not specified, extracted.onnx is output.
    
      -n, --non_verbose
        Do not show all information logs. Only error logs are displayed.
    
    Source code(tar.gz)
    Source code(zip)
  • 1.0.9(Jun 7, 2022)

  • 1.0.8(May 25, 2022)

  • 1.0.7(May 8, 2022)

  • 1.0.6(May 8, 2022)

    1. Fix: https://github.com/PINTO0309/simple-onnx-processing-tools/issues/2
    2. Eliminate comma-separated specifications for input_op_names and output_op_names
    3. Add non_verbose option
    Source code(tar.gz)
    Source code(zip)
  • 1.0.5(Apr 11, 2022)

  • 1.0.4(Apr 11, 2022)

  • 1.0.3(Apr 11, 2022)

  • 1.0.2(Apr 10, 2022)

  • 1.0.1(Apr 7, 2022)

  • 1.0.0(Apr 7, 2022)

Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

631 Jan 04, 2023
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

Numenta 6.3k Dec 30, 2022
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022