A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

Overview

sne4onnx

A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want. Simple Network Extraction for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • If INPUT OP name and OUTPUT OP name are specified, the onnx graph within the range of the specified OP name is extracted and .onnx is generated.
  • Change backend to onnx.utils.Extractor.extract_model so that onnx.ModelProto can be specified as input.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& pip install -U sne4onnx

1-2. Docker

### docker pull
$ docker pull pinto0309/sne4onnx:latest

### docker build
$ docker build -t pinto0309/sne4onnx:latest .

### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/sne4onnx:latest
$ cd /workdir

2. CLI Usage

$ sne4onnx -h

usage:
    sne4onnx [-h]
    --input_onnx_file_path INPUT_ONNX_FILE_PATH
    --input_op_names INPUT_OP_NAMES
    --output_op_names OUTPUT_OP_NAMES
    [--output_onnx_file_path OUTPUT_ONNX_FILE_PATH]

optional arguments:
  -h, --help
        show this help message and exit

  --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.

  --input_op_names INPUT_OP_NAMES
        List of OP names to specify for the input layer of the model.
        Specify the name of the OP, separated by commas.
        e.g. --input_op_names aaa,bbb,ccc

  --output_op_names OUTPUT_OP_NAMES
        List of OP names to specify for the output layer of the model.
        Specify the name of the OP, separated by commas.
        e.g. --output_op_names ddd,eee,fff

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path. If not specified, extracted.onnx is output.

3. In-script Usage

$ python
>>> from sne4onnx import extraction
>>> help(extraction)

Help on function extraction in module sne4onnx.onnx_network_extraction:

extraction(
    input_op_names: List[str],
    output_op_names: List[str],
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_onnx_file_path: Union[str, NoneType] = ''
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_op_names: List[str]
        List of OP names to specify for the input layer of the model.
        Specify the name of the OP, separated by commas.
        e.g. ['aaa','bbb','ccc']

    output_op_names: List[str]
        List of OP names to specify for the output layer of the model.
        Specify the name of the OP, separated by commas.
        e.g. ['ddd','eee','fff']

    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If not specified, .onnx is not output.
        Default: ''

    Returns
    -------
    extracted_graph: onnx.ModelProto
        Extracted onnx ModelProto

4. CLI Execution

$ sne4onnx \
--input_onnx_file_path input.onnx \
--input_op_names aaa,bbb,ccc \
--output_op_names ddd,eee,fff \
--output_onnx_file_path output.onnx

5. In-script Execution

5-1. Use ONNX files

from sne4onnx import extraction

extracted_graph = extraction(
  input_op_names=['aaa', 'bbb', 'ccc'],
  output_op_names=['ddd', 'eee', 'fff'],
  input_onnx_file_path='input.onnx',
  output_onnx_file_path='output.onnx',
)

5-2. Use onnx.ModelProto

from sne4onnx import extraction

extracted_graph = extraction(
  input_op_names=['aaa', 'bbb', 'ccc'],
  output_op_names=['ddd', 'eee', 'fff'],
  onnx_graph=graph,
  output_onnx_file_path='output.onnx',
)

6. Samples

6-1. Pre-extraction

image image image

6-2. Extraction

$ sne4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280.onnx \
--input_op_names 0,1 \
--output_op_names 497,785 \
--output_onnx_file_path hitnet_sf_finalpass_720x960_head.onnx

6-3. Extracted

image image image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/PythonAPIOverview.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/snd4onnx
  5. https://github.com/PINTO0309/scs4onnx
  6. https://github.com/PINTO0309/snc4onnx
  7. https://github.com/PINTO0309/sog4onnx
  8. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

You might also like...
Parasite: a tool allowing you to compress and decompress files, to reduce their size
Parasite: a tool allowing you to compress and decompress files, to reduce their size

🦠 Parasite 🦠 Parasite is a tool written in Python3 allowing you to "compress" any file, reducing its size. ⭐ Features ⭐ + Fast + Good optimization,

🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runtime Web.

A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx]
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Music source separation is a task to separate audio recordings into individual sources

Music Source Separation Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmeme

Comments
  • Significantly faster processing

    Significantly faster processing

    1. https://github.com/PINTO0309/simple-onnx-processing-tools/issues/2
    2. Eliminate comma-separated specifications for input_op_names and output_op_names
    3. Add non_verbose option
    opened by PINTO0309 0
Releases(1.0.10)
  • 1.0.10(Sep 7, 2022)

    • Add short form parameter
    $ sne4onnx -h
    
    usage:
        sne4onnx [-h]
        -if INPUT_ONNX_FILE_PATH
        -ion INPUT_OP_NAMES
        -oon OUTPUT_OP_NAMES
        [-of OUTPUT_ONNX_FILE_PATH]
        [-n]
    
    optional arguments:
      -h, --help
        show this help message and exit
    
      -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.
    
      -ion INPUT_OP_NAMES [INPUT_OP_NAMES ...], --input_op_names INPUT_OP_NAMES [INPUT_OP_NAMES ...]
        List of OP names to specify for the input layer of the model.
        e.g. --input_op_names aaa bbb ccc
    
      -oon OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...], --output_op_names OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...]
        List of OP names to specify for the output layer of the model.
        e.g. --output_op_names ddd eee fff
    
      -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path. If not specified, extracted.onnx is output.
    
      -n, --non_verbose
        Do not show all information logs. Only error logs are displayed.
    
    Source code(tar.gz)
    Source code(zip)
  • 1.0.9(Jun 7, 2022)

  • 1.0.8(May 25, 2022)

  • 1.0.7(May 8, 2022)

  • 1.0.6(May 8, 2022)

    1. Fix: https://github.com/PINTO0309/simple-onnx-processing-tools/issues/2
    2. Eliminate comma-separated specifications for input_op_names and output_op_names
    3. Add non_verbose option
    Source code(tar.gz)
    Source code(zip)
  • 1.0.5(Apr 11, 2022)

  • 1.0.4(Apr 11, 2022)

  • 1.0.3(Apr 11, 2022)

  • 1.0.2(Apr 10, 2022)

  • 1.0.1(Apr 7, 2022)

  • 1.0.0(Apr 7, 2022)

Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Emma 1 Jan 28, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepański 1 Apr 29, 2022