The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

Related tags

Deep LearningPRIMER
Overview

PRIMER

The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization.

PRIMER is a pre-trained model for multi-document representation with focus on summarization that reduces the need for dataset-specific architectures and large amounts of fine-tuning labeled data. With extensive experiments on 6 multi-document summarization datasets from 3 different domains on the zero-shot, few-shot and full-supervised settings, PRIMER outperforms current state-of-the-art models on most of these settings with large margins.

Set up

  1. Create new virtual environment by
conda create --name primer python=3.7
conda activate primer
conda install cudatoolkit=10.0
  1. Install Longformer by
pip install git+https://github.com/allenai/longformer.git
  1. Install requirements to run the summarization scripts and data generation scripts by
pip install -r requirements.txt

Usage of PRIMER

  1. Download the pre-trained PRIMER model here to ./PRIMER_model
  2. Load the tokenizer and model by
from transformers import AutoTokenizer
from longformer import LongformerEncoderDecoderForConditionalGeneration
from longformer import LongformerEncoderDecoderConfig

tokenizer = AutoTokenizer.from_pretrained('./PRIMER_model/')
config = LongformerEncoderDecoderConfig.from_pretrained('./PRIMER_model/')
model = LongformerEncoderDecoderForConditionalGeneration.from_pretrained(
            './PRIMER_model/', config=config)

Make sure the documents separated with <doc-sep> in the input.

Summarization Scripts

You can use script/primer_main.py for pre-train/train/test PRIMER, and script/compared_model_main.py for train/test BART/PEGASUS/LED.

Pre-training Data Generation

Newshead: we crawled the newshead dataset using the original code, and cleaned up the crawled data, the final newshead dataset can be found here.

You can use utils/pretrain_preprocess.py to generate pre-training data.

  1. Generate data with scores and entities with --mode compute_all_scores
  2. Generate pre-training data with --mode pretraining_data_with_score:
    • Pegasus: --strategy greedy --metric pegasus_score
    • Entity_Pyramid: --strategy greedy_entity_pyramid --metric pyramid_rouge

Datasets

  • For Multi-News and Multi-XScience, it will automatically download from Huggingface.
  • WCEP-10: the preprocessed version can be found here
  • Wikisum: we only use a small subset for few-shot training(10/100) and testing(3200). The subset we used can be found here. Note we have significantly more examples than we used in train.pt and valid.pt, as we sample 10/100 examples multiple times in the few-shot setting, and we need to make sure it has a large pool to sample from.
  • DUC2003/2004: You need to apply for access based on the instruction
  • arXiv: you can find the data we used in this repo
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

Graphics and Displays group - University of Cambridge 76 Dec 12, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022