[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Overview

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised Learning for Program Repair (ICML 2021).

@InProceedings{yasunaga2021break,
  author =  {Michihiro Yasunaga and Percy Liang},
  title =   {Break-It-Fix-It: Unsupervised Learning for Program Repair},
  year =    {2021},  
  booktitle = {International Conference on Machine Learning (ICML)},  
}

Problem: Repair Task

Our approach: BIFI

0. Dependencies

Specifically, run the following commands to create a conda environment (assuming CUDA10.1):

conda create -n BIFI python=3.7.7
conda activate BIFI
pip install tqdm
pip install torch==1.4.0 torchvision==0.5.0
cd utils/fairseq
pip install -e .
pip numpy==1.20.1 editdistance

1. Download Data

Download all the data from here (data.zip) and unzip it (note: 67GB when compressed, 400GB when decompressed). This includes the GitHub-Python dataset, and all the processed training data and trained models associated with BIFI. If you only want the original GitHub-Python dataset, you can download it from here (data_minimal.zip; 1GB). After unzipping the data.zip, the resulting file structure will look like:

.
├── README.md
└── data/
    ├── orig_bad_code/       (GitHub-Python dataset's bad code)
    ├── orig_good_code/      (GitHub-Python dataset's good code)
    └── round0/
        ├── data_paired      (paired data used to train fixer in round0)
        └── model-fixer      (fixer trained in round0)
    ├── round1-BIFI-part1/
        ├── data_paired      (paired data used to train breaker in BIFI round1)
        └── model-breaker    (breaker trained in BIFI round1)
    ├── round1-BIFI-part2/
        ├── data_paired      (paired data used to train fixer in BIFI round1)
        └── model-fixer      (fixer trained in BIFI round1)
    ├── ...

About the GitHub-Python dataset

We collected 3 million Python3 snippets from GitHub. Using the critic (Python AST parser), the code snippets are split into a set of bad code (with AST parse errors) and a set of good code (with no errors). The set of bad code is located at data/orig_bad_code/orig.bad.json and good code at data/orig_good_code/orig.good.json. Each entry of orig.bad.json or orig.good.json is a dictionary consisting of

  • "code_string": raw code in the string format
  • "code_toks_joined": the raw code is split into tokens by Python tokenizer, anonymized (string/number is replaced with special tokens <STRING>/<NUMBER>), and then joined by whitespace. The tokenization was done by utils/code_utils.py: tokenize_python_code()
  • "anonymize_dict": mapping betweens raw string/number and <STRING>/<NUMBER> so that "code_string" can be recovered from "code_toks_joined". This recovery can be done by utils/code_utils.py: code_toks_to_code_string()
  • "err_obj": type of the error caught by the critic (e.g. unbalanced parentheses, indentation error). This is only applicable to orig.bad.json.

The bad code snippets in orig.bad.json are split into 5 chunks (orig.0.bad to orig.4.bad in data/orig_bad_code/), where 3,4 is heldout as the test set and 0,1,2 is made available for BIFI training. This splitting was done by scripts/split_orig_bad_and_good.py

2. Training and Evaluation

First, train the initial fixer by running commands in src/run-round0.py one by one. We then consider three training algorithms on top of it: BIFI (our proposed method), FixerOnly (BIFI without breaker), and BackTranslation (BT; our baseline). For each algorithm,

  • BIFI: run commands in src/run-BIFI.py one by one
  • FixerOnly: run commands in src/run-FixerOnly.py one by one
  • BT: run commands in src/run-BT.py one by one

Below is an illustration for the case of BIFI.

run-round0.sh

export PYTHONPATH=.

#Train initial fixer on synthetic paired data
python src/c001__train_fixer.py --round_name round0 --gpu_id 0 --max_epoch 2

#Run the trained fixer on the bad code (chunk 0-4) and check the outputs by critic
python src/c003__run_fixer.py   --round_name round0 --gpu_ids '0,1,2,3,4'

#Evaluate the fixer outputs on the test set (chunk 3,4)
python src/c005__eval_fixer.py  --round_name round0

run-BIFI.sh (round 1)

#Use the fixer outputs on the bad code (chunk 0,1,2) to get new paired data (Equation 6 in the paper)
python src/c006__generate_paired_data_from_fixer.py --round_name round0 --out_round_name round1-BIFI-part1

#Train breaker on the new paired data (Equation 7 in the paper)
python src/c002__train_breaker.py --round_name round1-BIFI-part1 --gpu_id 0 --max_epoch 3

#Run the trained breaker on the good code and get new paired data (Equation 8 in the paper)
python src/c004__run_breaker.py   --round_name round1-BIFI-part1 --gpu_ids '0,1,2,3,4'
python src/c007__generate_paired_data_from_breaker.py --round_name round1-BIFI-part1 --out_round_name round1-BIFI-part2

#Train fixer on the new paired data (Equation 9 in the paper)
python src/c001__train_fixer.py --round_name round1-BIFI-part2 --gpu_id 0 --max_epoch 2 --continue_from 'data/round0/model-fixer/checkpoint.pt'

#Run the trained fixer on the bad code (chunk 0-4) and check the outputs by critic
python src/c003__run_fixer.py   --round_name round1-BIFI-part2 --gpu_ids '0,1,2,3,4'

#Evaluate the fixer outputs on the test set (chunk 3,4)
python src/c005__eval_fixer.py  --round_name round1-BIFI-part2

This is repeated similarly for round 2.

Owner
Michihiro Yasunaga
PhD Student in Computer Science
Michihiro Yasunaga
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Photogrammetry & Robotics Bonn 701 Dec 30, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
A PyTorch-based library for fast prototyping and sharing of deep neural network models.

A PyTorch-based library for fast prototyping and sharing of deep neural network models.

78 Jan 03, 2023
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022