Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Overview

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020

This repository provides Python code and data to reproduce experiments from the article Carousel Personalization in Music Streaming Apps with Contextual Bandits published in the proceedings of the 14th ACM Conference on Recommender Systems (RecSys 2020 - Best Short Paper Candidate).

Carousel Personalization

Media services providers, such as the music streaming platform Deezer, often leverage swipeable carousels to recommend personalized content to their users. These carousels are ranked lists of L items or cards from a substantially larger catalog (of size K), e.g. L albums, artists or playlists recommended on the homepage of the Deezer app. Only a few cards, say L_init < L, are initially displayed to users, who can swipe the screen to see additional cards.

Selecting the most relevant content to display in carousels is a challenging task, as the catalog is large and as users have different preferences. Also, ranking matters: some cards might not be seen by some users due to the swipeable structure.

In Section 2 of our RecSys paper, we model carousel personalization as a multi-armed bandit problem with multiple plays, cascade-based updates, delayed batch feedback and contextual information on users. We aim at capturing the most important characteristics of real-world swipeable carousels.

Then, we evaluate our framework by addressing a carousel-based playlist recommendation task on Deezer. We selected K = 862 playlists, that were created by professional curators from Deezer with the purpose of complying with a specific music genre, cultural area or mood, and that are among the most popular ones on the service. Playlists' cover images constitute the cards that can be recommended to users on the app homepage in a carousel, updated on a daily basis, with L = 12 available slots and L_init = 3 cards initially displayed. We aim at maximizing display-to-stream rates i.e. at identifying the L cards on which each user is the most likely to click and then to stream the underlying content, at least once during the round (= binary reward of 1 for each streamed playlist).

To determine which method (among the several bandit-based strategies mentioned in the paper - see table below) would best succeed in making users stream the recommended playlists, extensive experiments were conducted in two steps:

  • First, offline experiments simulating the responses of 974 960 users (anonymized) to carousel-based recommendations were run, on a simulation environment and on data that we both publicly release in this repository.
  • In the paper, these experiments were completed by an online A/B test on the Deezer app.

Installation

Code

git clone https://github.com/deezer/carousel_bandits
cd carousel_bandits

Requirements: python 3, matplotlib, numpy, pandas, scipy, seaborn

Data

We release two datasets, detailed in Section 3.2 of the paper:

  • user_features.csv: a dataset of 974 960 fully anonymized Deezer users. Each user is described by:
    • a 96-dimensional embedding vector (fields dim_0 to dim_95), to which we subsequently add a bias term in our code, summarizing the user's musical preferences (see paper for details on computations of embedding vectors)
    • a segment: a k-means clustering with k = 100 clusters was performed internally, to also assign a segment to each user, as required by policies implementing our proposed semi-personalization strategy
  • playlist_features.csv: a dataset of 862 playlists. Each playlist i is described by:
    • a 97-dimensional weight vector, corresponding to the theta_i vectors from Section 3.2 of the paper (see paper for details on computations of weight vectors). For each user-playlist pair (u,i), the released "ground-truth" display-to-stream probability is as follows, where the 97-dimensional x_u vector corresponds to the concatenation of the 96-dim embedding vector of user u and of the bias term, and where sigma denotes the sigmoid activation function:

Download complete datasets

Due to size restrictions, this repository only provides the playlist_features.csv dataset and a very small version of the user dataset with 9 users, named user_features_small.csv, in the data folder.

The complete user_features.csv dataset with 974 960 users is available for download on Zenodo.

Please download it there and subsequently place it in the data folder.

Run Offline Experiments

Simulations proceed as detailed in Section 3.2 of the paper.

Type in the following commands to run offline experiments with similar hyperparameters w.r.t. the paper.

General Experiments (Figure 2 of RecSys paper)

Offline evaluation of Top-12 playlist recommendation: expected cumulative regrets of policies over 100 simulated rounds.

Evaluation of all policies on user_features_small.csv (useful for quick testing)

python main.py --users_path data/user_features_small.csv --policies random,etc-seg-explore,etc-seg-exploit,epsilon-greedy-explore,epsilon-greedy-exploit,kl-ucb-seg,ts-seg-naive,ts-seg-pessimistic,ts-lin-naive,ts-lin-pessimistic --n_users_per_round 9 --output_path general_experiment_results.json
python plot_results.py --data_path general_experiment_results.json

Evaluation of two different policies (random, ts-seg-pessimistic) on the complete user_features.csv

python main.py --policies random,ts-seg-pessimistic --print_every 5 --output_path general_experiment_results.json
python plot_results.py --data_path general_experiment_results.json

Evaluation of all policies on the complete user_features.csv (takes some time!)

python main.py --policies random,etc-seg-explore,etc-seg-exploit,epsilon-greedy-explore,epsilon-greedy-exploit,kl-ucb-seg,ts-seg-naive,ts-seg-pessimistic,ts-lin-naive,ts-lin-pessimistic --print_every 1 --output_path general_experiment_results.json
python plot_results.py --data_path general_experiment_results.json

Note on running times: the ts-lin-naive and ts-lin-pessimistic policies might take a few minutes per round on a regular laptop. To speed up computations, you might consider removing them from the list of evaluated policies.

Results should look like:

Important note on ts-lin policies: our implementation of naive and pessimistic linear Thompson Sampling strategies have been improved since the publication of the RecSys paper. As a consequence, regret curves from these two policies are a bit different than in Figure 2 of the paper (results are better). Nonetheless, all conclusions from the article remain valid, especially regarding the comparison with ts-seg-pessimistic, and the comparison among ts-lin-naive and ts-lin-pessimistic.

Cascade vs No-Cascade Experiments (Figure 3 of RecSys paper)

Comparison of cascade vs no-cascade policies for epsilon-greedy and ts-seg-pessimistic policies, over 100 simulated rounds.

We provide comments on our implementation of a cascade-based behaviour for these experiments in policies.py.

python main.py --policies epsilon-greedy-explore,epsilon-greedy-explore-no-cascade,ts-seg-pessimistic,ts-seg-pessimistic-no-cascade --print_every 5 --output_path cascade_experiment_results.json
python plot_results.py --data_path cascade_experiment_results.json

Results should look like:

Complete list of main.py parameters

Parameter Type Description Default Value
users_path string Path to user features file data/user_features.csv
playlists_path string Path to playlist features file data/playlist_features.csv
output_path string Path to a json file to save regret values of each policy accross time results.json
policies string List of bandit policies to evaluate, separated by commas, among:
- random
- etc-seg-explore
- etc-seg-exploit
- epsilon-greedy-explore
- epsilon-greedy-exploit
- kl-ucb-seg
- ts-seg-naive
- ts-seg-pessimistic
- ts-lin-naive
- ts-lin-pessimistic
- epsilon-greedy-explore-no-cascade
- ts-seg_pessimistic-no-cascade
Please see Section 3 of the RecSys paper for details on policies. New policies must be implemented in policies.py and then defined in the set_policies function from main.py.
random,ts-seg-naive
n_recos int Number of slots L in the carousel i.e. number of recommendations that each policy must provide to users at each round 12
l_init int Number of slots L_init initially visible in the carousel 3
n_users_per_round int Number of users drawn on the random subsets of users selected at each round.
Note: users are drawn with replacement, implying that some users might click on several playlists during a same round (multi-armed bandit with multiple plays setting)
20 000
n_rounds int Number of simulated rounds 100
print_every int Print cumulative regrets of all policies every print_every round 10

Cite

Please cite our paper if you use this code or data in your own work:

@inproceedings{bendada2020carousel,
  title={Carousel Personalization in Music Streaming Apps with Contextual Bandits},
  author={Bendada, Walid and Salha, Guillaume and Bontempelli, Theo},
  booktitle={14th ACM Conference on Recommender Systems (RecSys 2020)},
  year={2020}
}
Owner
Deezer
Deezer
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022