Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Related tags

Deep LearningAtmoDist
Overview

Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

The prediction of future climate scenarios under anthropogenic forcing is critical to understand climate change and to assess the impact of potentially counter-acting technologies. Machine learning and hybrid techniques for this prediction rely on informative metrics that are sensitive to pertinent but often subtle influences. For atmospheric dynamics, a critical part of the climate system, no well established metric exists and visual inspection is currently still often used in practice. However, this "eyeball metric" cannot be used for machine learning where an algorithmic description is required. Motivated by the success of intermediate neural network activations as basis for learned metrics, e.g. in computer vision, we present a novel, self-supervised representation learning approach specifically designed for atmospheric dynamics. Our approach, called AtmoDist, trains a neural network on a simple, auxiliary task: predicting the temporal distance between elements of a randomly shuffled sequence of atmospheric fields (e.g. the components of the wind field from reanalysis or simulation). The task forces the network to learn important intrinsic aspects of the data as activations in its layers and from these hence a discriminative metric can be obtained. We demonstrate this by using AtmoDist to define a metric for GAN-based super resolution of vorticity and divergence. Our upscaled data matches both visually and in terms of its statistics a high resolution reference closely and it significantly outperform the state-of-the-art based on mean squared error. Since AtmoDist is unsupervised, only requires a temporal sequence of fields, and uses a simple auxiliary task, it has the potential to be of utility in a wide range of applications.

Original implementation of

Hoffmann, Sebastian, and Christian Lessig. "Towards Representation Learning for Atmospheric Dynamics." arXiv preprint arXiv:2109.09076 (2021). https://arxiv.org/abs/2109.09076

presented as part of the NeurIPS 2021 Workshop on Tackling Climate Change with Machine Learning

We would like to thank Stengel et al. for openly making available their implementation (https://github.com/NREL/PhIRE) of Adversarial super-resolution of climatological wind and solar data on which we directly based the super-resolution part of this work.


Requirements

  • tensorflow 1.15.5
  • pyshtools (for SR evaluation)
  • pyspharm (for SR evaluation)
  • h5py
  • hdf5plugin
  • dask.array

Installation

pip install -e ./

This also makes available multiple command line tools that provide easy access to preprocessing, training, and evaluation routines. It's recommended to install the project in a virtual environment as to not polutte the global PATH.


CLI Tools

The provided CLI tools don't accept parameters but rather act as a shortcut to execute the corresponding script files. All parameters controlling the behaviour of the training etc. should thus be adjusted in the script files directly. We list both the command-line command, as well as the script file the command executes.

  • rplearn-data (python/phire/data_tool.py)
    • Samples patches and generates .tfrecords files from HDF5 data for the self-supervised representation-learning task.
  • rplearn-train (python/phire/rplearn/train.py)
    • Trains the representation network. By toggling comments, the same script is also used for evaluation of the trained network.
  • phire-data (python/phire/data_tool.py)
    • Samples patches and generates .tfrecords files from HDF5 data for the super-resolution task.
  • phire-train (python/phire/main.py)
    • Trains the SRGAN model using either MSE or a content-loss based on AtmoDist.
  • phire-eval (python/phire/evaluation/cli.py)
    • Evaluates trained SRGAN models using various metrics (e.g. energy spectrum, semivariogram, etc.). Generation of images is also part of this.

Project Structure

  • python/phire
    • Mostly preserved from the Stengel et al. implementation, this directory contains the code for the SR training. sr_network.py contains the actual GAN model, whereas PhIREGANs.py contains the main training loop, data pipeline, as well as interference procedure.
  • python/phire/rplearn
    • Contains everything related to representation learning task, i.e. AtmoDist. The actual ResNet models are defined in resnet.py, while the training procedure can be found in train.py.
  • python/phire/evaluation
    • Dedicated to the evaluation of the super-resolved fields. The main configuration of the evaluation is done in cli.py, while the other files mostly correspond to specific evaluation metrics.
  • python/phire/data
    • Static data shipped with the python package.
  • python/phire/jetstream
    • WiP: Prediction of jetstream latitude as downstream task.
  • scripts/
    • Various utility scripts, e.g. used to generate some of the figures seen in the paper.

Preparing the data

AtmoDist is trained on vorticity and divergence fields from ERA5 reanalysis data. The data was directly obtained as spherical harmonic coefficients from model level 120, before being converted to regular lat-lon grids (1280 x 2560) using pyshtools (right now not included in this repository).

We assume this gridded data to be stored in a hdf5 file for training and evaluation respectively containing a single dataset /data with dimensions C x T x H x W. These dimensions correspond to channel (/variable), time, height, and width respectively. Patches are then sampled from this hdf5 data and stored in .tfrecords files for training.

In practice, these "master" files actually contained virtual datasets, while the actual data was stored as one hdf5 file per year. This is however not a hard requirement. The script to create these virtual datasets is currently not included in the repository but might be at a later point of time.

To sample patches for training or evaluation run rplearn-data and phire-data.

Normalization

Normalization is done by the phire/data_tool.py script. This procedure is opaque to the models and data is only de-normalized during evaluation. The mean and standard deviations used for normalization can be specified using DataSampler.mean, DataSampler.std, DataSampler.mean_log1p, DataSampler.std_log1p. If specified as None, then these statistics will be calculated from the dataset using dask (this will take some time).


Training the AtmoDist model

  1. Specify dataset location, model name, output location, and number of classes (i.e. max delta T) in phire/rplearn/train.py
  2. Run training using rplearn-train
  3. Switch to evaluation by calling evaluate_all() and compute metrics on eval set
  4. Find optimal epoch and calculate normalization factors (for specific layer) using calculate_loss()

Training the SRGAN model

  1. Specify dataset location, model name, AtmoDist model to use, and training regimen in phire/main.py
  2. Run training using phire-train

Evaluating the SRGAN models

  1. Specify dataset location, models to evaluate, output location, and metrics to calculate in phire/evaluation/cli.py
  2. Evaluate using phire-eval
  3. Toggle the if-statement to generate comparing plots and data between different models and rerun phire-eval
Owner
Sebastian Hoffmann
Sebastian Hoffmann
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | įŽ€äŊ“中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
Parasite: a tool allowing you to compress and decompress files, to reduce their size

đŸĻ  Parasite đŸĻ  Parasite is a tool written in Python3 allowing you to "compress" any file, reducing its size. ⭐ Features ⭐ + Fast + Good optimization,

Billy 30 Nov 25, 2022
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati

Nhat M. Nguyen 248 Nov 25, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
🏃‍♀ī¸ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀ī¸ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022