MolRep: A Deep Representation Learning Library for Molecular Property Prediction

Related tags

Deep LearningMolRep
Overview

MolRep: A Deep Representation Learning Library for Molecular Property Prediction

Summary

MolRep is a Python package for fairly measuring algorithmic progress on chemical property datasets. It currently provides a complete re-evaluation of 16 state-of-the-art deep representation models over 16 benchmark property datsaets.

architecture

If you found this package useful, please cite biorxiv for now:


Install & Usage

We provide a script to install the environment. You will need the conda package manager, which can be installed from here.

To install the required packages, follow there instructions (tested on a linux terminal):

  1. clone the repository

    git clone https://github.com/Jh-SYSU/MolRep

  2. cd into the cloned directory

    cd MolRep

  3. run the install script

    source install.sh [<your_cuda_version>]

Where <your_cuda_version> is an optional argument that can be either cpu, cu92, cu100, cu101. If you do not provide a cuda version, the script will default to cpu. The script will create a virtual environment named MolRep, with all the required packages needed to run our code. Important: do NOT run this command using bash instead of source!

Data

Data could be download from Google_Driver

Current Dataset

Dataset Task Task type #Molecule Splits Metric Reference
QM7 1 Regression 7160 Stratified MAE Wu et al.
QM8 12 Regression 21786 Random MAE Wu et al.
QM9 12 Regression 133885 Random MAE Wu et al.
ESOL 1 Regression 1128 Random RMSE Wu et al.
FreeSolv 1 Regression 642 Random RMSE Wu et al.
Lipophilicity 1 Regression 4200 Random RMSE Wu et al.
BBBP 1 Classification 2039 Scaffold ROC-AUC Wu et al.
Tox21 12 Classification 7831 Random ROC-AUC Wu et al.
SIDER 27 Classification 1427 Random ROC-AUC Wu et al.
ClinTox 2 Classification 1478 Random ROC-AUC Wu et al.
Liver injury 1 Classification 2788 Random ROC-AUC Xu et al.
Mutagenesis 1 Classification 6511 Random ROC-AUC Hansen et al.
hERG 1 Classification 4813 Random ROC-AUC Li et al.
MUV 17 Classification 93087 Random PRC-AUC Wu et al.
HIV 1 Classification 41127 Random ROC-AUC Wu et al.
BACE 1 Classification 1513 Random ROC-AUC Wu et al.

Methods

Current Methods

Self-/unsupervised Models

Methods Descriptions Reference
Mol2Vec Mol2Vec is an unsupervised approach to learns vector representations of molecular substructures that point in similar directions for chemically related substructures. Jaeger et al.
N-Gram graph N-gram graph is a simple unsupervised representation for molecules that first embeds the vertices in the molecule graph and then constructs a compact representation for the graph by assembling the ver-tex embeddings in short walks in the graph. Liu et al.
FP2Vec FP2Vec is a molecular featurizer that represents a chemical compound as a set of trainable embedding vectors and combine with CNN model. Jeon et al.
VAE VAE is a framework for training two neural networks (encoder and decoder) to learn a mapping from high-dimensional molecular representation into a lower-dimensional space. Kingma et al.

Sequence Models

Methods Descriptions Reference
BiLSTM BiLSTM is an artificial recurrent neural network (RNN) architecture to encoding sequences from compound SMILES strings. Hochreiter et al.
SALSTM SALSTM is a self-attention mechanism with improved BiLSTM for molecule representation. Zheng et al
Transformer Transformer is a network based solely on attention mechanisms and dispensing with recurrence and convolutions entirely to encodes compound SMILES strings. Vaswani et al.
MAT MAT is a molecule attention transformer utilized inter-atomic distances and the molecular graph structure to augment the attention mechanism. Maziarka et al.

Graph Models

Methods Descriptions Reference
DGCNN DGCNN is a deep graph convolutional neural network that proposes a graph convolution model with SortPooling layer which sorts graph vertices in a consistent order to learning the embedding of molec-ular graph. Zhang et al.
GraphSAGE GraphSAGE is a framework for inductive representation learning on molecular graphs that used to generate low-dimensional representations for atoms and performs sum, mean or max-pooling neigh-borhood aggregation to updates the atom representation and molecular representation. Hamilton et al.
GIN GIN is the Graph Isomorphism Network that builds upon the limitations of GraphSAGE to capture different graph structures with the Weisfeiler-Lehman graph isomorphism test. Xu et al.
ECC ECC is an Edge-Conditioned Convolution Network that learns a different parameter for each edge label (bond type) on the molecular graph, and neighbor aggregation is weighted according to specific edge parameters. Simonovsky et al.
DiffPool DiffPool combines a differentiable graph encoder with its an adaptive pooling mechanism that col-lapses nodes on the basis of a supervised criterion to learning the representation of molecular graphs. Ying et al.
MPNN MPNN is a message-passing graph neural network that learns the representation of compound molecular graph. It mainly focused on obtaining effective vertices (atoms) embedding Gilmer et al.
D-MPNN DMPNN is another message-passing graph neural network that messages associated with directed edges (bonds) rather than those with vertices. It can make use of the bond attributes. Yang et al.
CMPNN CMPNN is the graph neural network that improve the molecular graph embedding by strengthening the message interactions between edges (bonds) and nodes (atoms). Song et al.

Training

To train a model by K-fold, run 5-fold-training_example.ipynb.

Testing

To test a pretrained model, run testing-example.ipynb.

Results

Results on Classification Tasks.

Datasets BBBP Tox21 SIDER ClinTox MUV HIV BACE
Mol2Vec 0.9213±0.0052 0.8139±0.0081 0.6043±0.0061 0.8572±0.0054 0.1178±0.0032 0.8413±0.0047 0.8284±0.0023
N-Gram graph 0.9012±0.0385 0.8371±0.0421 0.6482±0.0437 0.8753±0.0077 0.1011±0.0000 0.8378±0.0034 0.8472±0.0057
FP2Vec 0.8076±0.0032 0.8578±0.0076 0.6678±0.0068 0.8834±0.0432 0.0856±0.0031 0.7894±0.0052 0.8129±0.0492
VAE 0.8378±0.0031 0.8315±0.0382 0.6493±0.0762 0.8674±0.0124 0.0794±0.0001 0.8109±0.0381 0.8368±0.0762
BiLSTM 0.8391±0.0032 0.8279±0.0098 0.6092±0.0303 0.8319±0.0120 0.0382±0.0000 0.7962±0.0098 0.8263±0.0031
SALSTM 0.8482±0.0329 0.8253±0.0031 0.6308±0.0036 0.8317±0.0003 0.0409±0.0000 0.8034±0.0128 0.8348±0.0019
Transformer 0.9610±0.0119 0.8129±0.0013 0.6017±0.0012 0.8572±0.0032 0.0716±0.0017 0.8372±0.0314 0.8407±0.0738
MAT 0.9620±0.0392 0.8393±0.0039 0.6276±0.0029 0.8777±0.0149 0.0913±0.0001 0.8653±0.0054 0.8519±0.0504
DGCNN 0.9311±0.0434 0.7992±0.0057 0.6007±0.0053 0.8302±0.0126 0.0438±0.0000 0.8297±0.0038 0.8361±0.0034
GraphSAGE 0.9630±0.0474 0.8166±0.0041 0.6403±0.0045 0.9116±0.0146 0.1145±0.0000 0.8705±0.0724 0.9316±0.0360
GIN 0.8746±0.0359 0.8178±0.0031 0.5904±0.0000 0.8842±0.0004 0.0832±0.0000 0.8015±0.0328 0.8275±0.0034
ECC 0.9620±0.0003 0.8677±0.0090 0.6750±0.0092 0.8862±0.0831 0.1308±0.0013 0.8733±0.0025 0.8419±0.0092
DiffPool 0.8732±0.0391 0.8012±0.0130 0.6087±0.0130 0.8345±0.0233 0.0934±0.0001 0.8452±0.0042 0.8592±0.0391
MPNN 0.9321±0.0312 0.8440±0.014 0.6313±0.0121 0.8414±0.0294 0.0572±0.0001 0.8032±0.0092 0.8493±0.0013
DMPNN 0.9562±0.0070 0.8429±0.0391 0.6378±0.0329 0.8692±0.0051 0.0867±0.0032 0.8137±0.0072 0.8678±0.0372
CMPNN 0.9854±0.0215 0.8593±0.0088 0.6581±0.0020 0.9169±0.0065 0.1435±0.0002 0.8687±0.0003 0.8932±0.0019

More results will be updated soon.

Owner
AI-Health @NSCC-gz
AI-Health @NSCC-gz
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
This is the official pytorch implementation of the BoxEL for the description logic EL++

BoxEL: Box EL++ Embedding This is the official pytorch implementation of the BoxEL for the description logic EL++. BoxEL++ is a geometric approach bas

1 Nov 03, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022