MolRep: A Deep Representation Learning Library for Molecular Property Prediction

Related tags

Deep LearningMolRep
Overview

MolRep: A Deep Representation Learning Library for Molecular Property Prediction

Summary

MolRep is a Python package for fairly measuring algorithmic progress on chemical property datasets. It currently provides a complete re-evaluation of 16 state-of-the-art deep representation models over 16 benchmark property datsaets.

architecture

If you found this package useful, please cite biorxiv for now:


Install & Usage

We provide a script to install the environment. You will need the conda package manager, which can be installed from here.

To install the required packages, follow there instructions (tested on a linux terminal):

  1. clone the repository

    git clone https://github.com/Jh-SYSU/MolRep

  2. cd into the cloned directory

    cd MolRep

  3. run the install script

    source install.sh [<your_cuda_version>]

Where <your_cuda_version> is an optional argument that can be either cpu, cu92, cu100, cu101. If you do not provide a cuda version, the script will default to cpu. The script will create a virtual environment named MolRep, with all the required packages needed to run our code. Important: do NOT run this command using bash instead of source!

Data

Data could be download from Google_Driver

Current Dataset

Dataset Task Task type #Molecule Splits Metric Reference
QM7 1 Regression 7160 Stratified MAE Wu et al.
QM8 12 Regression 21786 Random MAE Wu et al.
QM9 12 Regression 133885 Random MAE Wu et al.
ESOL 1 Regression 1128 Random RMSE Wu et al.
FreeSolv 1 Regression 642 Random RMSE Wu et al.
Lipophilicity 1 Regression 4200 Random RMSE Wu et al.
BBBP 1 Classification 2039 Scaffold ROC-AUC Wu et al.
Tox21 12 Classification 7831 Random ROC-AUC Wu et al.
SIDER 27 Classification 1427 Random ROC-AUC Wu et al.
ClinTox 2 Classification 1478 Random ROC-AUC Wu et al.
Liver injury 1 Classification 2788 Random ROC-AUC Xu et al.
Mutagenesis 1 Classification 6511 Random ROC-AUC Hansen et al.
hERG 1 Classification 4813 Random ROC-AUC Li et al.
MUV 17 Classification 93087 Random PRC-AUC Wu et al.
HIV 1 Classification 41127 Random ROC-AUC Wu et al.
BACE 1 Classification 1513 Random ROC-AUC Wu et al.

Methods

Current Methods

Self-/unsupervised Models

Methods Descriptions Reference
Mol2Vec Mol2Vec is an unsupervised approach to learns vector representations of molecular substructures that point in similar directions for chemically related substructures. Jaeger et al.
N-Gram graph N-gram graph is a simple unsupervised representation for molecules that first embeds the vertices in the molecule graph and then constructs a compact representation for the graph by assembling the ver-tex embeddings in short walks in the graph. Liu et al.
FP2Vec FP2Vec is a molecular featurizer that represents a chemical compound as a set of trainable embedding vectors and combine with CNN model. Jeon et al.
VAE VAE is a framework for training two neural networks (encoder and decoder) to learn a mapping from high-dimensional molecular representation into a lower-dimensional space. Kingma et al.

Sequence Models

Methods Descriptions Reference
BiLSTM BiLSTM is an artificial recurrent neural network (RNN) architecture to encoding sequences from compound SMILES strings. Hochreiter et al.
SALSTM SALSTM is a self-attention mechanism with improved BiLSTM for molecule representation. Zheng et al
Transformer Transformer is a network based solely on attention mechanisms and dispensing with recurrence and convolutions entirely to encodes compound SMILES strings. Vaswani et al.
MAT MAT is a molecule attention transformer utilized inter-atomic distances and the molecular graph structure to augment the attention mechanism. Maziarka et al.

Graph Models

Methods Descriptions Reference
DGCNN DGCNN is a deep graph convolutional neural network that proposes a graph convolution model with SortPooling layer which sorts graph vertices in a consistent order to learning the embedding of molec-ular graph. Zhang et al.
GraphSAGE GraphSAGE is a framework for inductive representation learning on molecular graphs that used to generate low-dimensional representations for atoms and performs sum, mean or max-pooling neigh-borhood aggregation to updates the atom representation and molecular representation. Hamilton et al.
GIN GIN is the Graph Isomorphism Network that builds upon the limitations of GraphSAGE to capture different graph structures with the Weisfeiler-Lehman graph isomorphism test. Xu et al.
ECC ECC is an Edge-Conditioned Convolution Network that learns a different parameter for each edge label (bond type) on the molecular graph, and neighbor aggregation is weighted according to specific edge parameters. Simonovsky et al.
DiffPool DiffPool combines a differentiable graph encoder with its an adaptive pooling mechanism that col-lapses nodes on the basis of a supervised criterion to learning the representation of molecular graphs. Ying et al.
MPNN MPNN is a message-passing graph neural network that learns the representation of compound molecular graph. It mainly focused on obtaining effective vertices (atoms) embedding Gilmer et al.
D-MPNN DMPNN is another message-passing graph neural network that messages associated with directed edges (bonds) rather than those with vertices. It can make use of the bond attributes. Yang et al.
CMPNN CMPNN is the graph neural network that improve the molecular graph embedding by strengthening the message interactions between edges (bonds) and nodes (atoms). Song et al.

Training

To train a model by K-fold, run 5-fold-training_example.ipynb.

Testing

To test a pretrained model, run testing-example.ipynb.

Results

Results on Classification Tasks.

Datasets BBBP Tox21 SIDER ClinTox MUV HIV BACE
Mol2Vec 0.9213±0.0052 0.8139±0.0081 0.6043±0.0061 0.8572±0.0054 0.1178±0.0032 0.8413±0.0047 0.8284±0.0023
N-Gram graph 0.9012±0.0385 0.8371±0.0421 0.6482±0.0437 0.8753±0.0077 0.1011±0.0000 0.8378±0.0034 0.8472±0.0057
FP2Vec 0.8076±0.0032 0.8578±0.0076 0.6678±0.0068 0.8834±0.0432 0.0856±0.0031 0.7894±0.0052 0.8129±0.0492
VAE 0.8378±0.0031 0.8315±0.0382 0.6493±0.0762 0.8674±0.0124 0.0794±0.0001 0.8109±0.0381 0.8368±0.0762
BiLSTM 0.8391±0.0032 0.8279±0.0098 0.6092±0.0303 0.8319±0.0120 0.0382±0.0000 0.7962±0.0098 0.8263±0.0031
SALSTM 0.8482±0.0329 0.8253±0.0031 0.6308±0.0036 0.8317±0.0003 0.0409±0.0000 0.8034±0.0128 0.8348±0.0019
Transformer 0.9610±0.0119 0.8129±0.0013 0.6017±0.0012 0.8572±0.0032 0.0716±0.0017 0.8372±0.0314 0.8407±0.0738
MAT 0.9620±0.0392 0.8393±0.0039 0.6276±0.0029 0.8777±0.0149 0.0913±0.0001 0.8653±0.0054 0.8519±0.0504
DGCNN 0.9311±0.0434 0.7992±0.0057 0.6007±0.0053 0.8302±0.0126 0.0438±0.0000 0.8297±0.0038 0.8361±0.0034
GraphSAGE 0.9630±0.0474 0.8166±0.0041 0.6403±0.0045 0.9116±0.0146 0.1145±0.0000 0.8705±0.0724 0.9316±0.0360
GIN 0.8746±0.0359 0.8178±0.0031 0.5904±0.0000 0.8842±0.0004 0.0832±0.0000 0.8015±0.0328 0.8275±0.0034
ECC 0.9620±0.0003 0.8677±0.0090 0.6750±0.0092 0.8862±0.0831 0.1308±0.0013 0.8733±0.0025 0.8419±0.0092
DiffPool 0.8732±0.0391 0.8012±0.0130 0.6087±0.0130 0.8345±0.0233 0.0934±0.0001 0.8452±0.0042 0.8592±0.0391
MPNN 0.9321±0.0312 0.8440±0.014 0.6313±0.0121 0.8414±0.0294 0.0572±0.0001 0.8032±0.0092 0.8493±0.0013
DMPNN 0.9562±0.0070 0.8429±0.0391 0.6378±0.0329 0.8692±0.0051 0.0867±0.0032 0.8137±0.0072 0.8678±0.0372
CMPNN 0.9854±0.0215 0.8593±0.0088 0.6581±0.0020 0.9169±0.0065 0.1435±0.0002 0.8687±0.0003 0.8932±0.0019

More results will be updated soon.

Owner
AI-Health @NSCC-gz
AI-Health @NSCC-gz
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022