Outlier Exposure with Confidence Control for Out-of-Distribution Detection

Overview

PWC PWC PWC PWC

OOD-detection-using-OECC

This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution Detection. Accepted as a Journal article in Neurocomputing, 2021.

1. What is Outlier Exposure with Confidence Control (OECC)?

Outlier Exposure with Confidence Control (OECC) is a technique that helps a Deep Neural Network (DNN) learn how to distinguish in- and out-of-distribution (OOD) data without requiring access to OOD samples. This technique has been shown that it can generalize to new distibutions. To learn how to distinguish in- and out-of-distribution samples, OECC makes a DNN to be highly uncertain for OOD samples by producing a uniform distribution at the output of the softmax layer. At the same time, it also makes it to make predictions for in-distribution samples with an average confidence close to its training accuracy, i.e. it controls its confidence.

The overall OECC loss function outperforms the previous SOTA results in OOD detection with OE both in image and text classification tasks. Additionally, we experimentally show in the paper that by combining OECC with SOTA post-training methods for OOD detection like the Mahalanobis Detector or the Gramian Matrices, one can achieve SOTA results in the OOD detection task.

2. Visualize the idea behind OECC

Figure. Histogram of softmax probabilities with CIFAR-10 as in-distribution data Din and Places365 as Out-of-Distribution (OOD) data Dout. Note that Din and Dout are disjoint. Left: Standard maximum softmax probability detector. Right: Maximum softmax probability detector using OECC.

3. Download Datasets

Some of the less common datasets can be downloaded by the following links: 80 Million Tiny Images, Icons-50, Textures, Chars74K, and Places365. Please also try this link in case the previous link is not working 80 Million Tiny Images.

4. How to Run

Each folder has its own separate README file with full details describing how to run the provided code.

5. Citation

If you find this useful in your research, please consider citing:

@article{PAPADOPOULOS2021138,
    title = {Outlier exposure with confidence control for out-of-distribution detection},
    journal = {Neurocomputing},
    volume = {441},
    pages = {138-150},
    year = {2021},
    issn = {0925-2312},
    doi = {https://doi.org/10.1016/j.neucom.2021.02.007},
    url = {https://www.sciencedirect.com/science/article/pii/S0925231221002393},
    author = {Aristotelis-Angelos Papadopoulos and Mohammad Reza Rajati and Nazim Shaikh and Jiamian Wang},
    keywords = {Out-of-distribution detection, Regularization, Anomaly detection, Deep neural networks, Outlier exposure, Calibration}
}

6. Code References

A part of the code has been based on the publicly available codes of Outlier Exposure and Mahalanobis.

Owner
Nazim Shaikh
Nazim Shaikh
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

MSG-Transformer Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens, by Jiemin

Hust Visual Learning Team 68 Nov 16, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
A TensorFlow implementation of SOFA, the Simulator for OFfline LeArning and evaluation.

SOFA This repository is the implementation of SOFA, the Simulator for OFfline leArning and evaluation. Keeping Dataset Biases out of the Simulation: A

22 Nov 23, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022