Outlier Exposure with Confidence Control for Out-of-Distribution Detection

Overview

PWC PWC PWC PWC

OOD-detection-using-OECC

This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution Detection. Accepted as a Journal article in Neurocomputing, 2021.

1. What is Outlier Exposure with Confidence Control (OECC)?

Outlier Exposure with Confidence Control (OECC) is a technique that helps a Deep Neural Network (DNN) learn how to distinguish in- and out-of-distribution (OOD) data without requiring access to OOD samples. This technique has been shown that it can generalize to new distibutions. To learn how to distinguish in- and out-of-distribution samples, OECC makes a DNN to be highly uncertain for OOD samples by producing a uniform distribution at the output of the softmax layer. At the same time, it also makes it to make predictions for in-distribution samples with an average confidence close to its training accuracy, i.e. it controls its confidence.

The overall OECC loss function outperforms the previous SOTA results in OOD detection with OE both in image and text classification tasks. Additionally, we experimentally show in the paper that by combining OECC with SOTA post-training methods for OOD detection like the Mahalanobis Detector or the Gramian Matrices, one can achieve SOTA results in the OOD detection task.

2. Visualize the idea behind OECC

Figure. Histogram of softmax probabilities with CIFAR-10 as in-distribution data Din and Places365 as Out-of-Distribution (OOD) data Dout. Note that Din and Dout are disjoint. Left: Standard maximum softmax probability detector. Right: Maximum softmax probability detector using OECC.

3. Download Datasets

Some of the less common datasets can be downloaded by the following links: 80 Million Tiny Images, Icons-50, Textures, Chars74K, and Places365. Please also try this link in case the previous link is not working 80 Million Tiny Images.

4. How to Run

Each folder has its own separate README file with full details describing how to run the provided code.

5. Citation

If you find this useful in your research, please consider citing:

@article{PAPADOPOULOS2021138,
    title = {Outlier exposure with confidence control for out-of-distribution detection},
    journal = {Neurocomputing},
    volume = {441},
    pages = {138-150},
    year = {2021},
    issn = {0925-2312},
    doi = {https://doi.org/10.1016/j.neucom.2021.02.007},
    url = {https://www.sciencedirect.com/science/article/pii/S0925231221002393},
    author = {Aristotelis-Angelos Papadopoulos and Mohammad Reza Rajati and Nazim Shaikh and Jiamian Wang},
    keywords = {Out-of-distribution detection, Regularization, Anomaly detection, Deep neural networks, Outlier exposure, Calibration}
}

6. Code References

A part of the code has been based on the publicly available codes of Outlier Exposure and Mahalanobis.

Owner
Nazim Shaikh
Nazim Shaikh
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
Source code for paper: Knowledge Inheritance for Pre-trained Language Models

Knowledge-Inheritance Source code paper: Knowledge Inheritance for Pre-trained Language Models (preprint). The trained model parameters (in Fairseq fo

THUNLP 31 Nov 19, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022